We report the effects of exposure to the endocrine disurptor (2-ethylhexyl) phthalate (DEHP) on transcriptome modification in the livers of in vivo Zebrafish. Our data indicate changes in fatty acid metabolism and insulin resistance, pathways associated with the development of Non-Alcoholic Fatty Liver Disease (NAFLD). Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.
Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP).
No sample metadata fields
View SamplesExposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs, are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops disease that resembles human cancer. Using zebrafish as systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 21 day exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6,188 mRNAs and 15 miRNAs were differently expressed (q = 0.1). By analyzing human orthologs of the DE zebrafish genes signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome in adult zebrafish and has the potential to cause adverse outcomes including cancer. Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.
The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome.
No sample metadata fields
View SamplesI hypothesized that social interactions, such as those involved in reproductive behaviors, would lead to immediate and assayable changes in gene expression that may have important effects on individual reproductive success and fitness through alterations in physiology or via short-term or long-term changes in nervous system function.
A rapid genome-wide response to Drosophila melanogaster social interactions.
Sex, Age
View SamplesMicroarray expression analysis of mouse ESCs treated with the MYCi 10058-F4.
Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause.
Specimen part
View SamplesHuman Immunodeficiency Virus (HIV) associated nephropathy (HIVAN) is characterized clinically by both nephrosis and by rapidly progressive kidney dysfunction. HIVAN is characterized histologically by both collapsing focal segmental glomerulosclerosis and prominent tubular damage. Neutrophil Gelatinase Associated Lipocalin (NGAL) is known to be rapidly expressed in distal segments of the nephron at the onset of different types of acute kidney injury, but few studies have examined NGAL in chronic kidney disease models. We found that urinary NGAL (uNGAL) was highly expressed by patients with biopsy proven HIVAN, whereas HIV+ patients without HIVAN demonstrated lower levels. uNGAL was also highly expressed in the TgFVB mouse model of HIVAN, which demonstrated NGAL gene expression in dilated, microcystic segments of the nephron. These data show that NGAL is markedly upregulated in the setting of HIVAN, and suggest that uNGAL levels may provide a non-invasive screening test to detect HIVAN related tubular disease.
Urinary NGAL marks cystic disease in HIV-associated nephropathy.
No sample metadata fields
View SamplesDetermination of the genes regulated by ERRalpha nuclear receptor in MDA-MB231 cells Overall design: MDA-MB231 cells were inactivated for ERRalpha using siRNA. Three different siRNAs were used (siE1, siE2, siE3). Cells treated with a control siRNA (siC samples) were used for comparison. Duplicate samples were analyzed. Transcriptomic analysis was performed by RNA-Seq
ERRα induces H3K9 demethylation by LSD1 to promote cell invasion.
Cell line, Subject
View SamplesDetermination of the genes regulated by LSD1 in MDA-MB231 cells Overall design: MDA-MB231 cells were inactivated for LSD1 using siRNA. Two different siRNAs were used (siL1, siL2). Cells treated with a control siRNA (siC samples) were used for comparison. Duplicate samples were analyzed. Transcriptomic analysis was performed by RNA-Seq
ERRα induces H3K9 demethylation by LSD1 to promote cell invasion.
No sample metadata fields
View SamplesWe hypothesized that social interactions, such as those involved in courtship and mating, would lead to assayable changes in gene expression that may have important effects on individual reproductive success and fitness through alterations in physiology or changes in nervous system function.
Mating alters gene expression patterns in Drosophila melanogaster male heads.
Sex, Age, Specimen part, Treatment
View SamplesWe hypothesized that social interactions, such as those involved in reproductive behaviors, would lead to immediate and assayable changes in gene expression that may have important effects on individual reproductive success and fitness through alterations in physiology or via short-term or long-term changes in nervous system function.
Socially-responsive gene expression in male Drosophila melanogaster is influenced by the sex of the interacting partner.
Sex, Age, Specimen part, Treatment
View SamplesNeutrophils represent a fundamental mechanism of antimicrobial resistance and inflammation 1. Moreover, neutrophils have emerged as important players in the activation, orchestration and regulation of adaptive immune responses2,3. Neutrophils are a component of the tumor microenvironment (TME) and have been prevalently shown to promote progression 4-6. On the other hand, unleashed neutrophilic effectors have also been reported to mediate anti-cancer resistance7-11. Antibody-mediated depletion used to investigate the role of neutrophils in tumor progression suffers from limitations, including duration, specificity and perturbation of the system12. We therefore used a genetic approach to investigate the role of neutrophils in primary 3-methylcholanthrene (3-MCA)-induced sarcomagenesis. Neutrophils were found to play an essential role in resistance against primary carcinogenesis by driving an interferon-? dependent type 1 immune response. Neutrophil-dependent macrophage production of IL-12p70 led to type 1 polarization of CD4- CD8- unconventional aß T cells (UTCaß) in the TME. Single cell RNAseq analysis and in vivo evidence from two preclinical sarcoma models highlight the antitumor potential of a UTCaß subset. In the TCGA cohort of human undifferentiated pleomorphic sarcomas (UPS), unlike other sarcomas, granulocyte-colony stimulating factor receptor (CSF3R) expression and a neutrophil signature were associated with better outcome and with a type 1 immune response. The positive association between high neutrophil infiltration and improved clinical outcome was confirmed in an independent UPS cohort by immunohistochemistry. Thus, neutrophils, by driving a type 1 immune response and polarization of UTCaß, mediate resistance against murine and human sarcomas. Overall design: two experimental conditions, two biological replicates for each condition
Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors.
Specimen part, Subject
View Samples