Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation.
Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli.
No sample metadata fields
View SamplesAffymetrix Hu133 GeneCHIP Microarray data for Control and c-MYC knock-down (KD) human cancer cell lines.
Novel c-MYC target genes mediate differential effects on cell proliferation and migration.
No sample metadata fields
View SamplesWe implemented an optimized processing, using alternative Chip Description Files (CDFs) and fRMA normalization, which improve the quality of downstream analysis.
Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples.
Specimen part
View SamplesTreatment with Aurora inhibitors has been shown to induce diverse biological responses in different tumor cell lines, in part depending on their p53 status. To characterize at the transcriptional level the effects of Danusertib we analyzed by microarray different tumor cell lines, with WT or mutant p53 status, that showed differential cell cycle response upon drug treatment.
Transcriptional analysis of the Aurora inhibitor Danusertib leading to biomarker identification in TP53 wild type cells.
Specimen part, Cell line
View SamplesIn this study we obtained gene expression profiles of MCFS and parental MCF7 cell lines using Illumina microarrays
In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.
Specimen part, Cell line
View SamplesDendritic cells (DCs) are professional antigen-presenting cells whose activity is intrinsically linked to the microenvironment. Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues that creates a special microenvironment conditioning cell physiology. We studied the effects of hypoxia on the differentiation of human monocytes into DCs. Immature DCs were differentiated in vitro from human monocytes under normoxic (iDCs) or hypoxic (Hi-DCs) conditions and the gene expression profile was determined. Hi-DCs expressed novel hypoxia-inducible genes and were characterized by up-regulation of pathways associated with cell movement/migration.
Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Use of formalin-fixed paraffin-embedded samples for gene expression studies in breast cancer patients.
Specimen part
View SamplesThe use of Affymetrix U133 2.0 Plus chips on FFPE samples when coupled with a qPCR-based sample pre-assessment step, yielded satisfactory results from the point of view of biological reliability. When compared with the Illumina DASL WG platform, specifically designed for degraded RNA, the data generated with the Affymetrix platform showed a wider interquartile range (IQR 1.32 vs 0.57, p<2.2x10-16) suggesting a superior discriminatory power within samples as indicated by the good agreement with the immunohistiochemically derived ER status.
Use of formalin-fixed paraffin-embedded samples for gene expression studies in breast cancer patients.
Specimen part
View SamplesPurpose: To identify the impact of thermoneutral housing as opposed to standard housing on gene expression profiles in the mouse peripheral blood mononuclear cells (PBMCs), focusing on proinflammatory immune responses and high-fat diet induced non-alcoholic fatty liver disease pathogenesis. Methods: Expression profiles from PBMCs collected from C57Bl6 mice fed chow or high-fat diet for 8 weeks, following 2 weeks at either standard or thermoneutral housing conditions. Sequencing was performed in duplicate, the Illumina HiSeq 2500. Transcripts that passed quality filters were analyzed at the gene level, using Strand NGS for accurate alignment and quantification. Results: We mapped approximately 20million reads per sample to the mm10 genome using annotations produced by Ensembl, which represented 36186 transcripts. Approximately 14000 genes exhibited reasonable expression in at least one experimental condition. The primary focus was the effect of housing temperature while holding diet consistent (i.e. thermoneutral vs standard, both on high-rat diet), where ~2700 genes exhibited differential regulation. Conclusions: We present the transcriptomic profile of PBMCs from mice fed chow of high-fat diets, following either standard or thermoneutral housing. We obseve an augmented proinflammatory immune response. Overall design: PBMC expression profiles were characterized following eight weeks of chow or high-fat diet, following two weeks of standard or thermoneutral housing.
Modulation of ambient temperature promotes inflammation and initiates atherosclerosis in wild type C57BL/6 mice.
Specimen part, Subject
View SamplesDendritic cells (DCs) are professional antigen-presenting cells whose activity is intrinsically linked to the microenvironment. Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues that creates a special microenvironment conditioning cell physiology. We studied the effects of hypoxia on the differentiation of human monocytes into DCs and maturation into mature DCs. Mature DCs were differentiated in vitro from human monocytes under normoxic or hypoxic conditions and the gene expression profile was determined.
Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo.
Specimen part, Disease, Treatment
View Samples