Plants of Arabidopsis thaliana (ecotype Col-0, nrb4-2 and nrb4-4) were grown in phytochambers in short day conditions during three weeks. Then, samples from different pots were mixed, and the RNA extracted.
Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid.
Age
View SamplesAstrocytes were purified from postnatal day 2 mouse cortices by immunopanning with HepaCAM. Inhibitors and DMSO were added on in-vitro day 2. HBEGF was depleted on the cell prep day and till in-vitro day 7. In-vitro day 2, 7 and 14 samples were collected on designed timepointed. Overall design: Three EGFR inhibitor samples and three relative DMSO control samples, three P53 inhibitor samples and three relative DMSO control samples, two HBEGF samples and two HBEGF withdrawal samples, three samples for each in-vitro day 2, 7 and 14.
Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation.
Specimen part, Cell line, Subject
View SamplesThe growth of neural stem cells is strongly enhanced on myelin in vitro and in vivo. To identify the mechanisms associated with this phenome, we compared RNA expression from mouse E12 derived spinal cord cells on stimulation substrates (laminin and myelin) to permissive substrates (PDL). We identified Negr1 as mediator of the stimulatory effects of myelin. Overall design: Examination of transcripts in embryonic spinal cord cells stimulated by laminin and myelin substrates in vitro.
Adult rat myelin enhances axonal outgrowth from neural stem cells.
Specimen part, Subject
View SamplesTranscriptome of murine testis from wild type mice and mice lacking telomerase for three generations (G3-Terc), Ku86 or both telomerase and Ku86.
Effectors of mammalian telomere dysfunction: a comparative transcriptome analysis using mouse models.
No sample metadata fields
View SamplesThe anthracycline, doxorubicin (Dox), is widely used in oncology, but it may it may cause a cardiomyopathy which has dismal prognosis and cannot be effectively prevented. The secretome of multipotent human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to reduce ischemic cardiac damage. Here, it is shown that the hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with primary mouse neonatal cardiomyocytes reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is paralleled by decreased DNA damage and is associated with nuclear translocation of NF-kB and upregulation of a set of genes controlled by NF-kB, namely Il6 and Cxcl1, which promote cardiomyocyte survival, and Cyp1b1 and Abcb1, which encode for proteins involved in Dox metabolism and efflux, respectively. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by the hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of its target genes, and prevention of Dox-initiated senescence and apoptosis in response to the hAFS-CM. This work may lay the ground for the development of a stem cell-based paracrine therapy of chemotherapy-related cardiotoxicity.
The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity.
Specimen part
View SamplesThe CREB family of transcription factors stimulates cellular gene expression following phosphorylation at a conserved serine (Ser133 in CREB1) in response to cAMP and other extracellular signals. In order to characterize CREB target genes in various tissues, we give a cAMP agonist, forskolin (FSK), to cell lines or primary cultures and monitor the gene expression. To eliminate CREB-independent effects of FSK on cellular gene expression, we employed a dominant negative form of CREB called A-CREB, which dimerizes selectively with and blocks the DNA binding activity of CREB but not other bZIP family members. Therefore, genes that are induced by cAMP and the induction was blocked by A-CREB treatment likely represents CREB target genes.
Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues.
No sample metadata fields
View SamplesAltered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) can provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. Biochemical, protein and mRNA expression analyses demonstrated that the increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and non-tumoral immortalized counterparts (EONT) mainly rely upon: 1) ChoK activation, consistent with higher protein content and increased ChoKalpha mRNA expression levels; 2) PC-plc activation, consistent with higher, previously reported, protein expression. More limited and variable sources of PCho could derive, in some EOC cells, from activation of Phospholipase D or GPC-pd. Phospholipase A2 activity and isoforms expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from EOC patients. Overall, we demonstrated that the elevated PCho pool detected in EOC cells primarily resulted from the upregulation/activation of ChoK and PC-plc involved in the biosynthetic and in a degradative pathway of the PC-cycle, respectively.
Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells.
Age, Specimen part, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View SamplesFUS-CHOP and EWS-CHOP balanced translocations characterize myxoid liposarcoma which encompasses myxoid (ML) and round cell (RC) variants initially believed to be distinct diseases. Currently, myxoid and RC liposarcoma are regarded to represent the well differentiated and the poorly differentiated ends, respectively, within spectrum of myxoid liposarcoma where the fusion proteins blocking lipogenic differentiation play a role in tumor initiation while molecular determinants associated to progression to RC remain poorly understood. Activation of AKT pathway sustained by PIK3CA and PTEN mutations and growth factor receptor signalling such as RET and IGF1R have been recently correlated with the increasing of aggressiveness and RC. Aim of the present study is to elucidate molecular events involved in driving round cell progression analyzing two small series of MLS selected to be representative of the two end of the gamut: the pure myxoid (0% of RC component) and RC with high cellular component (80%).
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View SamplesEGR3 expression is upregulated in human prostate cancer compared to normal prostate tissue and is associated with absence of relapse, while low EGR3 expression in tumors is predicitive of disease relapse (Pio et al., PLOS One 2013; 8(1):e54096). However the function of EGR3 in prostate cancer is unknown. Human prostate cancer cells M12 containing high levels of EGR3 were used for shRNA-mediated silencing of EGR3. Gene expression analysis of EGR3 knockdown cells reveals a role in inflammation and the existence of a crosstalk with the NFkB pathway.
Early growth response 3 (Egr3) is highly over-expressed in non-relapsing prostate cancer but not in relapsing prostate cancer.
Cell line, Treatment
View Samples