This SuperSeries is composed of the SubSeries listed below.
Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.
Sex, Age, Specimen part, Subject
View SamplesIL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36//, Il24, epigen and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective.
Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.
Sex, Age, Specimen part
View SamplesTriple-negative (TN) breast cancers need to be refined in order to identify therapeutic subgroups of patients.
Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response.
Disease
View SamplesA zebrafish forward genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in the lysosomal hydrolase Cathepsin L that manifests the hallmarks of human lysosomal storage diseases. In uninfected mutants, macrophages progressively accumulate undigested material in their lysosomes, leading to impaired migration and the accumulation of unengulfed cell debris. During mycobacterial infection, these vacuolated macrophages cannot migrate to phagocytose infected macrophages undergoing apoptosis in the tuberculous granuloma. Consequently, unengulfed apoptotic macrophages undergo secondary necrosis causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal accumulations similarly impair migration to newly infecting mycobacteria. We find that important aspects of this phenotype are recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of alveolar macrophages from smokers exhibit lysosomal accumulations and do not migrate to Mycobacterium tuberculosis. This incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis. Overall design: A forward genetic screen for zebrafish larvae that are hypersusceptible to Mycobacterium marinum infection identified a mutation in the transcription factor snapc1b at 13: 37996163 (T->C). Individuals of wild type (T/T) and mutant (C/C) were genotyped and pooled respectively for RNA isolation and transcriptome analysis.
Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration.
No sample metadata fields
View SamplesBackground: Type I interferons (IFNs) are essential to the clearance of viral diseases, in part by initiating upregulation of IFN regulated genes (IRGs). A clear distinction between genes upregulated directly by virus and genes upregulated by secondary IFN production has not been made. Here we investigated the genes regulated by IFN-a2b compared to the genes regulated by SARS-CoV infection in ferrets.
Early gene expression events in ferrets in response to SARS coronavirus infection versus direct interferon-alpha2b stimulation.
Specimen part
View SamplesThe 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODNadjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN- 2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freunds adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.
Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus.
Specimen part, Treatment
View SamplesROR?t is well recognized as the lineage defining transcription factor for TH17 cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here we demonstrate that the transcriptional repressor REV-ERBa is exclusively expressed in TH17 cells, competes with ROR?t for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as ROR?t-dependent, including Il17a. Deletion of REV-ERBa enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as ROR? modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBa negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases. Overall design: 10 samples; 5 conditions with 2 replicates per condition
REV-ERBα Regulates T<sub>H</sub>17 Cell Development and Autoimmunity.
Specimen part, Subject
View SamplesBackground: Pandemic H1N1 influenza A is a newly emerging strain of human influenza that is easily transmitted between people and has spread globally to over 116 countries. Human infection leads to symptoms ranging from mild to severe with lower respiratory complications observed in a small but significant number of infected individuals. Little is currently known about host immunity and Pandemic H1N1 influenza infections.
Modeling host responses in ferrets during A/California/07/2009 influenza infection.
Specimen part
View SamplesA global genomics approach was used to identify patterns of immune dysregulation during H5N1 influenza virus infection as the host response, in particular hyperchemokinemia, is thought to contribute to the extreme pathology associated with this disease.
Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets.
Specimen part
View SamplesTo further investigate the underlying mechanisms of severe acute respiratory syndrome (SARS) pathogenesis and evaluate the therapeutic efficacy of potential drugs and vaccines it is necessary to use an animal model that is highly representative of the human condition in terms of respiratory anatomy, physiology and clinical sequelae. The ferret, Mustela putorius furo, supports SARS-CoV replication and displays many of the symptoms and pathological features seen in SARS-CoV-infected humans. We have recently established a SARS-CoV infection-challenge ferret platform for use in evaluating potential therapeutics to treat SARS. The main objective of the current study was to extend our previous results and identify early host immune responses upon infection and determine immune correlates of protection upon challenge with SARS-CoV in ferrets.
Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model.
Specimen part
View Samples