Glucocorticoids are part of the therapeutic armamentarium of chronic lymphocytic leukemia where it has been suggested that cells with unmutated IGHV genes exhibit higher sensitivity. The mechanisms by which glucorticoids are active in CLL are not well elucidated.
Differential gene expression profile associated to apoptosis induced by dexamethasone in CLL cells according to IGHV/ZAP-70 status.
Specimen part
View SamplesUnderstanding the response of memory CD8 T cells to persistent antigen re-stimulation and the role of CD4 T cell help is critical to the design of successful vaccines for chronic diseases. However, studies comparing the protective abilities and qualities of memory and nave cells have been mostly performed in acute infections, and little is known about their roles during chronic infections. Herein, we show that memory cells dominate over nave cells and are protective when present in large enough numbers to quickly reduce infection. In contrast, when infection is not rapidly reduced, memory cells are quickly lost, unlike nave cells. This loss of memory cells is due to (i) an early block in cell proliferation, (ii) selective regulation by the inhibitory receptor 2B4, and (iii) increased reliance on CD4 T cell help. These findings have important implications towards the design of T cell vaccines against chronic infections and tumors.
Tight regulation of memory CD8(+) T cells limits their effectiveness during sustained high viral load.
Specimen part
View SamplesTranscriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP
Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.
Specimen part, Disease, Cell line
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesDHPM-thiones rescue Ab-mediated toxicity in a metal-dependent manner that strongly synergizes with clioquinol, a known metal-binding and cytoprotective compound. RNA-seq experiments reveal a modest, yet specific effect on metal-responsive genes that do not change with the inactive control compound. Overall design: Treatment of biological replicates with DMSO, 0.8 uM clioquinol, or 20 uM 10{3,3,1} (DHPM-thione) for ~6 hours prior to harvesting of cells and isolation of total RNA.
Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism.
Cell line, Subject
View SamplesHepatocellular carcinoma (HCC) is ranked second in cancer-associated deaths worldwide. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis). It is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations.
Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe discovery of significant heterogeneity in the self-renewal durability of adult haematopoietic stem cells (HSCs) has challenged our understanding of the molecules involved in population maintenance throughout life. Gene expression studies in bulk populations are difficult to interpret since multiple HSC subtypes are present and HSC purity is typically less than 50% of the input cell population. Numerous groups have therefore turned to studying gene expression profiles of single HSCs, but again these studies are limited by the purity of the input fraction and an inability to directly ascribe a molecular program to a durable self-renewing HSC. Here we combine single cell functional assays with flow cytometric index sorting and single cell gene expression assays to gain the first insight into the gene expression program of HSCs that possess durable self-renewal. This approach can be used in other stem cell systems and sets the stage for linking key molecules with defined cellular functions. Overall design: single-cell RNA-Seq of haematopoietic stem cells
Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.
No sample metadata fields
View SamplesMechanisms of immune regulation may control proliferation of aberrant plasma cells (PCs) in patients with the asymptomatic monoclonal gammopathy of undetermined significance (MGUS) preventing progression to active multiple myeloma (MM). We investigated the role of CD85j (LILRB1), an inhibitory immune checkpoint for B cell function, in MM pathogenesis.
Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma.
Specimen part, Cell line
View SamplesIt is well-established that neurons in the adult mammalian central nervous system are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after optic nerve crush can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration.
Time Course Analysis of Gene Expression Patterns in Zebrafish Eye During Optic Nerve Regeneration.
Specimen part
View SamplesBurkitt lymphoma is the commonest cancer in children in Africa. We compared the gene expression profiles of African Burkitt lymphoma patients with those of cases presented in Western countries in both immunocompetent (sporadic Burkitt lymphoma) and HIV-infected patients (immunodeficiency associated Burkitt lymphoma).
Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes.
Specimen part
View Samples