The purpose of this study was to characterize the histologic development of OA in a mouse model where OA is induced by destabilization of the medial meniscus (DMM model) and to identify genes regulated during different stages of the disease, using RNA isolated from the joint organ and analyzed using microarrays.427 genes from the microarrays passed consistency and significance filters. There was an initial up-regulation at 2 and 4 weeks of genes involved in morphogenesis, differentiation, and development, including growth factor and matrix genes, as well as transcription factors including Atf2, Creb3l1, and Erg. Most genes were off or down-regulated at 8 weeks with the most highly down-regulated genes involved in cell division and the cytoskeleton. Gene expression increased at 16 weeks, in particular extracellular matrix genes including Prelp, Col3a1 and fibromodulin.The results support a phasic development of OA with early matrix remodelling and transcriptional activity followed by a more quiescent period that is not maintained.
Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis.
Sex, Age, Specimen part
View SamplesCystic Fibrosis lung disease progresses by a combination of accelerated airways inflammation and bacterial colonization and infection. Airways inflammation in CF is predominantly neutrophilic and complicates airway clearance therapies through cellular debris, excessive DNA, excessive and viscous mucous, and high concentrations of neutrophils,Il-8 and related cytokines liberated along the NFkB signaling pathway. We conducted a single site, randomized, double blind, placebo-controlled, proof-of-concept trial in which we evaluated the effects of 28 days of two dose levels (0.05 mg and 0.10 mg daily) of an older cardiac glycoside, digitoxin, as compared with placebo, on inflammatory markers in induced sputum obtained from 24 subjects with mild to moderate CF lung disease. Nasal epithelial cells from 23 subjects were analyzed for microarray analysis. CF patients 18 to 45 years old, any genotype combination, were eligible.
Digitoxin for Airway Inflammation in Cystic Fibrosis: Preliminary Assessment of Safety, Pharmacokinetics, and Dose Finding.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesParkinson's disease pathogenesis proceeds through several phases, culminating in the loss of dopaminergic neurons of the substantia nigra (SN). Although the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of oxidative SN injury is frequently used to study degeneration of dopaminergic neurons in mice and non-human primates, an understanding of the temporal sequence of molecular events from inhibition of mitochondrial complex 1 to neuronal cell death is limited. Here, microarray analysis and integrative data mining were used to uncover pathways implicated in the progression of changes in dopaminergic neurons after MPTP administration. This approach enabled the identification of small, yet consistently significant, changes in gene expression within the SN of MPTP-treated animals. Such an analysis disclosed dysregulation of genes in three main areas related to neuronal function: cytoskeletal stability and maintenance, synaptic integrity, and cell cycle and apoptosis. The discovery and validation of these alterations provide molecular evidence for an evolving cascade of injury, dysfunction, and cell death.
Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra.
Sex, Age, Specimen part
View SamplesTranscriptome analysis of human peripheral blood T cells
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Time
View SamplesTranscriptome analysis of human peripheral blood monocytes
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.
Age, Specimen part
View SamplesControlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO2 = 10 kPa, 25 kPa/pO2 = 5 kPa, 50 kPa/pO2 = 21 kPa, 25 kPa/pO2 = 21 kPa, or 97 kPa/pO2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.
Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.
Age, Specimen part
View SamplesControlled hypobaria presents biology with an environment that is never encountered in terrestrial ecology, yet the apparent components of hypobaria are stresses typical of terrestrial ecosystems. High altitude, for example, presents terrestrial hypobaria always with hypoxia as a component stress, since the relative partial pressure of O2 is constant in the atmosphere. Laboratory-controlled hypobaria, however, allows the dissection of pressure effects away from the effects typically associated with altitude, in particular hypoxia, as the partial pressure of O2 can be varied. In this study, whole transcriptomes of plants grown in ambient (97 kPa/pO2 = 21 kPa) atmospheric conditions were compared to those of plants transferred to five different atmospheres of varying pressure and oxygen composition for 24 h: 50 kPa/pO2 = 10 kPa, 25 kPa/pO2 = 5 kPa, 50 kPa/pO2 = 21 kPa, 25 kPa/pO2 = 21 kPa, or 97 kPa/pO2 = 5 kPa. The plants exposed to these environments were 10 day old Arabidopsis seedlings grown vertically on hydrated nutrient plates. In addition, 5 day old plants were also exposed for 24 h to the 50 kPa and ambient environments to evaluate age-dependent responses. The gene expression profiles from roots and shoots showed that the hypobaric response contained more complex gene regulation than simple hypoxia, and that adding back oxygen to normoxic conditions did not completely alleviate gene expression changes in hypobaric responses.
Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis.
Age, Specimen part
View SamplesCanonical Hedgehog (Hh) signaling regulates the expression of genes that are critical to the patterning and development of a variety of organ systems. In adult, both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligand, activation occurs within the stromal microenvironment (Yauch et al., 2009). In situ hybridization of the pathway target gene, Ptch1, shows that signaling is located at stromal perivascular fibroblast-like cells in xenograft tumor sections derived from Hh-expressing colorectal cancer cell lines.
Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells.
Specimen part, Cell line, Treatment
View SamplesIt is well-established that neurons in the adult mammalian central nervous system are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after optic nerve crush can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration.
Time Course Analysis of Gene Expression Patterns in Zebrafish Eye During Optic Nerve Regeneration.
Specimen part
View Samples