Gastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed.
Genome-wide expression profile of sporadic gastric cancers with microsatellite instability.
No sample metadata fields
View SamplesBackground: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells.
Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics.
Cell line, Treatment
View SamplesIn order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb 14 days old mice as compared to control KSP_CRE mice
Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.
Specimen part
View SamplesIn order to identify the effects of Tcfeb overexpression on the kidney transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the double heterozygous KSP_CRE/KSP_Tcfeb mice as compared to control KSP_CRE mice
Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.
Specimen part
View SamplesLncRNA H19X was silienced in dermal fibroblats of systemic sclerosis patients with antisense oligonuclotides. The hypothesis tested in the present study was that H19X is an important factor in the development of TGFb-driven fibrosis. Results provide important information about the role H19X in fibroblasts in particolar on extracellular matrix production and cell cycle regulation.
Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis.
Specimen part, Disease, Disease stage, Treatment
View SamplesTranscriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP
Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.
Specimen part, Disease, Cell line
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Specimen part, Cell line, Subject
View SamplesMicroglia play a pivotal role in the maintenance of brain homeostasis, but lose their homeostatic function during the course of neurodegenerative disorders. We identified a specific APOE-dependent molecular signature in microglia isolated from mouse models of amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer’s disease (SOD1, EAE and APP-PS1) and in microglia surrounding neuritic A?-plaques in human Alzheimer’s disease brain. This is mediated by a switch from a (M0)-homeostatic to (MGnD)-neurodegenerative phenotype following phagocytosis of apoptotic neurons via the TREM2-APOE pathway. TREM2 induces APOE signaling which is a negative regulator of the transcription program in M0-homeostatic microglia. Targeting the TREM2-APOE pathway restores the M0-homeostatic signature of microglia in APP-PS1 and SOD1 mice and prevents from neuronal loss in an acute model of neurodegeneration. In SOD1 mice, TREM2 regulates MGnD in a gender-dependent manner. APOE-mediated MGnD microglia lose their tolerogenic function. Taken together, our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target to restore homeostatic microglia. Overall design: Illumina NextSeq500 was used to identify disease-associated vs. homeostatic molecular microglia signature in microglia in different disease models and transgenic models. Bulk microglia (1,000 cells/sample) FCRLS+ sorted microglia.
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.
Sex, Specimen part, Cell line, Subject
View SamplesTo assess the mechanism by which adult germ cells induce cbs-1 expression in the intestine at cold temperature, we performed transcriptome analysis of extruded germ lines from wild-type worms upon iff-1 knockdown or temperature increase Overall design: We extruded germ line of iff-1 RNAi-treated worms at 15°C and empty vector (EV) RNAi-treated worms at 20°C and compared to the germ line of EV RNAi-treated worms at 15°C.
Prostaglandin signals from adult germ stem cells delay somatic aging of <i>Caenorhabditis elegans</i>.
Specimen part, Subject
View SamplesObjective: Analyze expression patterns of genes located at linkage region of SPOAN syndrome (11q12-13), in order to identify genes differentially expressed in samples of SPOAN individuals compared to healthy controls.
Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome.
Specimen part
View Samples