This study is part of a larger multidisciplinary study entitled A dormant sub-population expressing interleukin-1 receptor characterises anti-estrogen resistant ALDH+ breast cancer stem cells.
Increased Expression of Interleukin-1 Receptor Characterizes Anti-estrogen-Resistant ALDH<sup>+</sup> Breast Cancer Stem Cells.
Specimen part, Disease, Subject
View SamplesTranscriptional profile of control and VEGF overexpressing FACS-isolated CD34+ Cancer stem cells from DMBA/TPA induced skin tumours
A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours.
No sample metadata fields
View SamplesCancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.
SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.
No sample metadata fields
View SamplesCancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.
SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.
Specimen part
View Samples