Expression of the proendocrine gene neurogenin 3 (Ngn3) is required for the development of pancreatic islets. In order to better characterize the molecular events regulated by Ngn3 during development, we have determined the expression profile of differentiating murine embryonic stem cells (mESCs) uniformly induced to overexpress Ngn3. An ESC line was created that allows for the induction of Ngn3 by adding doxycycline (Dox) to the culture medium. Genome-wide microarray analysis was performed to identify genes regulated by Ngn3 in a variety of both undifferentiated and differentiated conditions. Characterization of pancreatic developmental markers during embryoid body (EB) formation revealed an optimum context for Ngn3 induction. Neuroendocrine genes including neurogenic differentiation 1 (NeuroD1) and single minded 1 (Sim1) were found to be significantly upregulated. Genes regulated by Ngn3 independent of the context were analyzed using systematic gene ontology tools and revealed Notch signaling as the most significantly regulated signaling pathway (p=0.009). This result is consistent with the hypothesis that Ngn3 expression makes the cell competent for Notch signaling to be activated and conversely, more sensitive to Notch signaling inhibition. Indeed, EBs induced to express Ngn3 were significantly more sensitive to gamma-secretase inhibitor-mediated Notch signaling inhibition (p<0.0001). Moreover, we find that Ngn3 induction in differentiating ESCs results in significant increases in insulin, glucagon, and somatostatin transcription.
Differentiation of embryonic stem cells conditionally expressing neurogenin 3.
No sample metadata fields
View SamplesTranscriptome comparison of 15 lines representing the University of Minnesota six-rowed malting breeding program at two time points of the malting process: 'out of steep' and '3 days of germination'. Three replicates of each genotype and time point were accomplished. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Maria Muoz-Amatriain. The equivalent experiment is BB91 at PLEXdb.]
Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement.
Age, Specimen part
View SamplesTranscriptome comparison of the winter malting barley '88Ab536' with the spring malting variety 'Morex' at two time points of the malting process: 'out of steeping' and '3 days of germination'. Three replicates of each genotype and time point were accomplished. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Maria Munoz-Amatriain. The equivalent experiment is BB76 at PLEXdb.]
Structural and functional characterization of a winter malting barley.
Age, Specimen part
View SamplesWe performed total RNA-Seq and compared expression levels of genes of whole blood cells isolated from patients after kidney transplantation with stable graft function, antibody mediated- and t cell mediated graft rejection. Overall design: Whole blood cells were isolated from 6 patients with stable graft function, 6 patients with histologically verified antibody mediated graft rejection episode and 4 patients with histologically verified T cell mediated graft rejection after kidney transplantation. Total RNA was extracted and cDNA libraries for total RNA sequencing were generated using “TruSeq® Stranded Total RNA Library” kit (Illumina, San Diego, CA, USA).
The regulation of interferon type I pathway-related genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney transplantation.
Specimen part, Subject
View SamplesRett syndrome (RTT, OMIM #312750) is a severe X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. The disorder is almost exclusively diagnosed in females, because males affected by the disease usually die perinatally due to severe encephalopathy. Direct MeCP2 target genes underlying the neuropathogenesis of RTT remain largely unknown.
FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice.
No sample metadata fields
View SamplesRosacea is a common chronic inflammatory skin disease of unknown etiology. Our knowledge about an involvement of the adaptive immune system is very limited. We performed detailed transcriptome analysis, qRT-PCR, and quantitative immunohistochemistry on facial biopsies of rosacea patients, classified according to their clinical subtype. As controls, we used samples from healthy controls. Our study shows significant activation of the immune system in all subtypes of rosacea, characterizing erythematotelangiectatic rosacea (ETR) already as a disease with significant influx of proinflammatory cells. The T cell response is dominated by Th1/Th17-polarized immune cells, as demonstrated by significant upregulation of IFN or IL-17, for example. Chemokine expression patterns support a Th1/Th17 polarization profile of the T cell response. Macrophages and mast cells are increased in all three subtypes of rosacea, while neutrophils reach a maximum in papulopustular rosacea. Our studies also provide evidence for activation of plasma cells with significant antibody production already in ETR, followed by a crescendo pattern towards phymatous rosacea. In sum, Th1/Th17 polarized inflammation and macrophage infiltration is an underestimated hallmark in all subtypes of rosacea. Therapies directly targeting the Th1/Th17 pathway are promising candidates in the future treatment of this skin disease.
Molecular and Morphological Characterization of Inflammatory Infiltrate in Rosacea Reveals Activation of Th1/Th17 Pathways.
No sample metadata fields
View SamplesMelioidosis is a severe infectious disease caused by Burkholderia pseudomallei, a gram-negative bacillus classified by the NIAID as a category B priority agent. Septicemia is the most common presentation of the disease with 40% mortality rate even with appropriate treatments. Faster diagnostic procedures are required to improve therapeutic response and survival rates. We have used microarray technology to generate genome-wide transcriptional profiles (>48,000 transcripts) of whole blood obtained from patients with septicemic melioidosis (n=32), patients with sepsis caused by other pathogens (n=31), and uninfected controls (n=29). Unsupervised analyses demonstrated the existence of a whole blood transcriptional signature distinguishing patients with sepsis from control subjects. The majority of changes observed were common to both septicemic melioidosis and sepsis caused by other infections, including genes related to inflammation, interferon-related genes, neutrophils, cytotoxic cells, and T cells. Finally, class prediction analysis identified a 37 transcript candidate diagnostic signature that distinguished melioidosis from sepsis caused by other organisms with 100% and 78% accuracy in training and independent test sets, respectively. This finding was confirmed by the independent validation set, which showed 80% prediction accuracy. This signature was highly enriched in genes coding for products involved in the MHC Class II antigen processing and presentation pathway. Transcriptional patterns of whole blood RNA distinguish patients with septicemic melioidosis from patients with sepsis caused by other pathogens. Once confirmed in a large scale trial this diagnostic signature might constitute the basis of a differential diagnostic assay.
Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis.
Sex, Age, Treatment, Race
View SamplesLebers hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease caused by homoplasmic mutations in complex I subunit genes, and is characterized by incomplete penetrance. The mechanism of low penetrance of complex I mutation is still largely unclear today. In this study, we created the patient-specific induced pluripotent stem cells (iPSCs) from MT-ND4 mutated LHON affected patient, asymptomatic mutation carrier and control, and differentiated them into retinal ganglion cells (RGCs) for pathogenesis survey. We observed the following phenotypic features in the LHON-specific RGCs as compared to the control: 1) enhanced mitochondrial biogenesis in affected and carriers; 2) compensatory increased mitochondrial complex I activity in carrier, but not in affected patient; 3) reduced spare respiratory activity in affected and carrier. Microarray profiling of LHON-specific RGCs revealed abundant overexpression of genes encoding components of cell cycle regulation machinery as compared to the control.
Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber's hereditary optic neuropathy.
Specimen part, Disease
View SamplesPheochromocytomas, catecholamine-secreting tumors of neural crest origin, are frequently hereditary. However, the molecular basis of the majority of these tumors is unknown. We identified the transmembrane-encoding gene TMEM127 on chromosome 2q11 as a new pheochromocytoma susceptibility gene. In a cohort of 103 samples, we detected truncating germline TMEM127 mutations in approximately 30% of familial tumors and about 3% of sporadic-appearing pheochromocytomas without a known genetic cause. The wild-type allele was consistently deleted in tumor DNA, suggesting a classic mechanism of tumor suppressor gene inactivation. Pheochromocytomas with mutations in TMEM127 are transcriptionally related to tumors bearing NF1 mutations and, similarly, show hyperphosphorylation of mammalian target of rapamycin (mTOR) effector proteins. Accordingly, in vitro gain-of-function and loss-of-function analyses indicate that TMEM127 is a negative regulator of mTOR. TMEM127 dynamically associates with the endomembrane system and colocalizes with perinuclear (activated) mTOR, suggesting a subcompartmental-specific effect. Our studies identify TMEM127 as a tumor suppressor gene and validate the power of hereditary tumors to elucidate cancer pathogenesis.
Germline mutations in TMEM127 confer susceptibility to pheochromocytoma.
No sample metadata fields
View SamplesClassification of tamixifen-treated breast cancer patients into high and low risk groups using the 76-gene signature
The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy.
No sample metadata fields
View Samples