We identified a congenic mouse with an introgressed region from the A/J donor inbred strain on an inbred C57BL/6J background that showed a reduced locomotor stimulant response to methamphetamine. We conducted microarray analysis of the striatum from drug-naive female and male mice that were 6-9 weeks old. The congenic region is on chromosome 11 and spans approximately 84-96 Mb. There were two groups of mice used in the analysis: B6 control mice versus congenic mice. Congenic mice were collapsed across heterozygous and homozygous genotypes.
Congenic dissection of a major QTL for methamphetamine sensitivity implicates epistasis.
Sex
View SamplesAbout 15% of the TG26 mice develop lymphoma. HIV protein expression is observed, particularly the protein p17/Matrix. Total cellular RNA from spleen and lymph nodes from 3 groups of animals: FVB/N controls (n=3), Tg26 asymptomatic (n=6), and Tg26 with lymphoma (n=6). Results provide insights into the gene expression program in animals with lymphoma.
Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice.
Specimen part, Disease
View SamplesUrothelial cell carcinoma of the bladder (UCC) is a common disease characterized by FGFR3 mutation. Whilst upregulation of this oncogene occurs most frequently in low-grade non-invasive tumors, recent data reveal increased FGFR3 expression characterizes a common sub-type of invasive UCC sharing genetic similarities with lobular breast cancer. These similarities include upregulation of the FOXA1 transcription factor and reduced expression of microRNAs-99a/100. We have previously identified direct regulation of FGFR3 by these two microRNAs and now search for further targets. Using a microarray meta-database we find potential FOXA1 regulation by microRNAs-99a/100. We confirm direct targeting of the FOXA1 3UTR by microRNAs-99a/100 and also potential indirect regulation through microRNA-485-5p/SOX5/JUN-D/FOXL1 and microRNA-486/FOXO1a. In 292 benign and malignant urothelial samples, we find an inverse correlation between the expression of FOXA1 and microRNAs-99a/100 (r=-0.33 to -0.43, p<0.05). As for FGFR3 in UCC, tumors with high FOXA1 expression have lower rates of progression than those with low expression (Log rank p=0.009). Using global gene expression and CpG methylation profiling we find genotypic consequences of FOXA1 upregulation in UCC. These are associated with regional hypomethylation and near FOXA1 binding sites, and mirror patterns previously reported in FGFR3 mutant UCC. These include gene silencing through aberrant hypermethylation (e.g. IGFBP3) and affect genes that characterize lobular breast cancer (e.g. ERBB2, XBP1). In conclusion, we have identified microRNAs-99a/100 mediate a direct relationship between FGFR3 and FOXA1, and potentially facilitate cross talk between these pathways in UCC.
MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer.
Cell line
View SamplesRhesus macaques (Macaca mulatta) infected with a lethal dose of lymphocytic choriomeningitis virus-strain WE (LCMV-WE) provide a model for Lassa fever virus infection of man. Like Lassa fever in human beings, disease begins with flu-like symptoms but can progress to morbidity fairly rapidly. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al. J. Virol. 2007: PMID 17522210) showing distinct pre-viremic and viremic stages that discriminated between virulent and benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. We observed gene expression changes that occurred before the viremic stage of the disease, and could potentially serve as biomarkers that discriminate between exposure to a hemorrhagic fever virus and exposure to a benign virus. Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a much broader effect on liver cell function than non-virulent virus. During the first few days of infection, virulent virus impacted gene expression associated with the generation of energy, such as fatty acid metabolism and glucose metabolism, with the complement and coagulation cascades, and with steroid metabolism, MAPK signaling and cell adhesion. For example, the energy profile resembled that of an organism entering starvation: acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis, was shut down and gene products involved in gluconeogenesis were up-regulated. In conclusion, this study identifies several potential gene markers of LCMV-WE-associated liver disease and contributes to the database of gene expression changes correlated with LCMV pathogenesis in primates.
Gene expression in primate liver during viral hemorrhagic fever.
Specimen part, Time
View SamplesThe MYC transcription factor is a master regulator of diverse cancer pathways and somatic cell reprogramming. MYC is a compelling therapeutic target that exhibits cancer-specific cellular effects. Pharmacologic inhibition of MYC function has proven challenging due to its numerous modes of forced expression and the difficulty of disrupting protein-DNA interactions. Here we demonstrate the rapid and potent abrogation of MYC gene transcription by representative small molecule bromodomain inhibitors of the BET family of chromatin adaptors. This transcriptional suppression of MYC was observed in the context of the natural, chromosomally translocated, and amplified gene locus. Inhibition of BET bromodomain-promoter interactions and subsequent reduction of MYC transcript and protein levels resulted in G1 arrest and extensive apoptosis in a variety of leukemia and lymphoma cell lines. Exogenous expression of MYC from an artificial promoter that is resistant to BET regulation significantly protected cells from growth suppression by BET inhibitors and revealed that MYC exerts a direct and tight control of key pro-growth and anti-apoptotic target genes. Transcriptional profiling of two cells after 4 and 8 hours of treatment with BET inhibitor shows that both MYC and its targets are strongly down-regulated. We thus demonstrate that pharmacologic inhibition of MYC is achievable through targeting BET bromodomains, and suggest that such inhibitors may have broad clinical applicability given the widespread pathogenetic role of MYC in cancer.
Targeting MYC dependence in cancer by inhibiting BET bromodomains.
Cell line, Treatment
View SamplesSensitivity to different pain modalities has a genetic basis that remains largely unknown. The use of closely related inbred mouse strains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. Here, we expanded on pain phenotypes and observed an increase in inflammatory nociceptive behaviors induced by hindpaw formalin injections in B6J versus B6N mice (Charles River Laboratories). No strain differences were observed in mechanical or thermal hypersensitivity or in paw diameter following the Complete Freund s Adjuvant (CFA) model of inflammatory pain, indicating specificity in the inflammatory nociceptive stimulus. In the chronic nerve constriction injury (CCI), a model of neuropathic pain, no strain differences were observed in baseline mechanical threshold or in mechanical hypersensitivity up to one month post-CCI. We replicated the enhanced thermal nociception in B6J mice in the 52.5 C hot plate test relative to B6N mice from The Jackson Laboratory. Using a B6J x B6N-F2 cross (N=164), we mapped a major QTL underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (LOD = 3.81, 8.74 Mb-36.50 Mb) that was more pronounced in males. Genes containing expression QTLs (eQTLs) associated with the peak nociceptive marker that have been implicated in pain and inflammation include Ryr1, Cyp2a5, Pou2f2, Clip3, Sirt2, Actn4, and Ltbp4 (FDR < 0.05). Future studies involving positional cloning and gene editing will determine the quantitative trait gene(s) and potential pleiotropy of this locus across other pain modalities. RNA-seq data and genotype information from striatum punches of F2 C57BL/6J (B6J) cross C57BL/NJ (B6NJ) oxycodone-treated mice. Genotypes are given relative to B6J allele, eg 0 = homozygous B6J. Overall design: C57BL/6J (B6J) and C57BL/NJ (B6NJ) mice were purchased from JAX at 7 weeks of age and were habituated in the vivarium one week prior to experimental testing that occurred next door. B6J females were crossed to B6NJ males to generate B6J x B6NJ-F1 mice and B6J x B6NJ F1 offspring were intercrossed to generate B6J x B6NJ F2 mice. Mice were 50-100 days old at the time of testing. F2 mice recieved four daily oxycodone injections (20 mg/kg, i.p.). Ninety SNP markers spaced approximately 30 Mb (approximately 15 cM) apart were genotyped using a custom-designed Fluidigm array.
C57BL/6 substrain differences in inflammatory and neuropathic nociception and genetic mapping of a major quantitative trait locus underlying acute thermal nociception.
Sex, Age, Subject
View SamplesInvestigating the effects of two different classes of KDM1A inhibitors on the transcriptome of AML cell lines Overall design: 16 different samples with biological replicates. Treatment for 24 and 72 hours with an irreversible KDM1A inhibitor (RN-1) or a reversible KDM1A inhibitor (GSK690) or an inactive isomer of the latter (GSK690*).
Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes.
No sample metadata fields
View SamplesSmall molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are in clinical trials for a variety of cancers, but patient selection strategies are limited. This is due in part to the heterogeneity of response following BET inhibition (BETi), which includes differentiation, senescence, and cell death in subsets of cancer cell lines. To elucidate the dominant features defining response to BETi, we carried out phenotypic and gene expression analysis of both treatment naïve cell lines and engineered tolerant lines. We found that both de novo and acquired tolerance to BET inhibition are driven by the robustness of the apoptotic response and that genetic or pharmacological manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further identify that ordered expression of the apoptotic genes BCL2, BCL2L1, and BAD significantly predicts response to BETi. Our findings highlight the role of the apoptotic network in response to BETi, providing a molecular basis for patient stratification and combination therapies. Overall design: Gene expression profiling of A375 melanoma cells or NOMO-1 AML cells treated with DMSO or the BET inhibitor, CPI203. Also, gene expression profiling of the respective derived BETi-tolerant cells treated with DMSO or CPI203.
Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response.
No sample metadata fields
View SamplesComparison of R1 embryonic stem cells response to DMSO and retinoic acid and control
Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.
Specimen part, Cell line, Compound
View SamplesLassa fever virus is a zoonotic pathogen that plagues the endemic areas of West Africa. Rhesus macaques infected with a related arenavirus, LCMV-WE, serve as a model for Lassa-infection of human beings. Using a dose similar to that expected from a needle-stick, monkeys experience an early pre-viremic phase (day 1-3), a viremic phase with febrile onset (day 4-7), and, like human beings who succumb, they die within two weeks. Our goal was to monitor changes in gene expression that parallel disease progression in an effort to 1) identify genes with altered expression after infection, 2) identify genes that could discriminate between a virulent and non-virulent infection, and 3) identify genes encoding products that could serve as treatment targets for FDA-approved pharmaceuticals. Genes related to all three of these categories have been identified and some have been given preliminary validation by quantitative PCR and proteomic studies. These genes will be valuable candidates for future validation as prognostic biomarkers
Early blood profiles of virus infection in a monkey model for Lassa fever.
No sample metadata fields
View Samples