The evolutionarily conserved Wnt/?-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector ?-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/?-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type?specific "mRNA tagging" to enrich for VPC and seam cell?specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type?specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.
Specimen part
View SamplesBackground: The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also expressed in animals with more complex body plans. To this end, we have applied Micro-Array Profiling of Caenorhabditis elegans Cells (MAPCeL) to muscle cell populations extracted from developing Caenorhabditis elegans embryos. Results: Fluorescence Activated Cell Sorting (FACS) was used to isolate myo-3::GFP-positive muscle cells, and their cultured derivatives, from dissociated early Caenorhabditis elegans embryos. Microarray analysis identified 6,693 expressed genes, 1,305 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle-enriched gene set was validated by comparisons to known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type-specific expression profiling and reveal that 60% of these transcripts have human homologs.
The embryonic muscle transcriptome of Caenorhabditis elegans.
No sample metadata fields
View SamplesBackground:
The embryonic muscle transcriptome of Caenorhabditis elegans.
No sample metadata fields
View SamplesAnalysis of estrogen receptor (ER)-positive MCF7 cell total RNA expression and polysome-assiciated RNA expression following treatment with estradiol (E2) and vehicle (etoh).
Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells.
Cell line
View SamplesGoal of this experiment is the identify differentially expressed genes in GBM zenografts that have been exposed to Cilengitide for 1 or 8 hours. A control with no cilengitide is also included. None of the tumors recieved radiation.
Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency.
No sample metadata fields
View SamplesThe microarray analysis was designed to test the effects of HES5.3 siRNAs, Atoh7 siRNAs and nt siRNAs on gene expression in embryonic chick retina.
A positive feedback loop between ATOH7 and a Notch effector regulates cell-cycle progression and neurogenesis in the retina.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A cross-platform genome-wide comparison of the relationship of promoter DNA methylation to gene expression.
Specimen part, Subject
View SamplesTranscriptional profiling of IAS subjects
A cross-platform genome-wide comparison of the relationship of promoter DNA methylation to gene expression.
Specimen part, Subject
View SamplesRNAseq analysis of cell lines with ADAR1-p150 and ADAR1-p110 knock-outs and primary human tissue samples (from GSE57353 and GSE99392 data sets) to identify sites of ADAR1 editing Overall design: 12 samples: 3 cell lines (HeLa, HeLa-p150KO, HeLa-ADAR1KO) with four conditions each (no treatment, MeV-vac2(GFP)-infected, MeV-CKO(GFP)-infected, IFNA/D-treated). One biological replicate per sample. In addition, raw data files of 9 samples from series GSE57353 and GSE99392 were re-analyzed using the same data processing pipeline.
Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150.
Cell line, Subject
View SamplesU2AF65 is an essential splicing factor involved in the 3'splice site recognition dureing the first steps of spliceosome assembly. In addition, this protein has nucleocytoplasmic shuttling activity and the Drosophila homologue has been implicated in mRNA export.
Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors.
No sample metadata fields
View Samples