Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.
Sex, Specimen part, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.
Treatment
View SamplesVariable strengths of T cell receptor (TCR) signaling can produce divergent outcomes for T cell development and function. The mechanisms leading to different outcomes are incompletely understood, but may include distinct activation thresholds for different transcription factors as well as distinct sensitivities among target genes to transcription factors. IRF4 is one transcription factor implicated in responses to variable TCR signal strength. IRF4 expression increases uniformly with increasing TCR signal strength (i.e., analog), but it is unclear how IRF4 induced distinct genes at different levels, rather than different amounts of the same genes. Here, we analyzed global gene expression in TH2 cells and used ChIP-seq to define the relationship between TCR signal strength, enhancer occupancy and transcriptional activity for BATF/IRF4-dependent genes. We show that enhancers exhibit a spectrum of affinity for the BATF/IRF4 ternary complex mediate graded responsiveness of individual genes to increasing TCR signal strength. Differential gene induction by BATF and IRF4 occurs through interaction with enhancer elements of different affinity for BATF/IRF4 complexes. The increased resolution of factor binding site identified using ChIP-exo allowed the identification of a novel AICE2 motif binding BATF/IRF4 with higher affinity and that this may explain the protective role of a single nucleotide polymorphism in the CTLA-4 locus known to decrease the incidence of autoimmune diseases.
Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesRunx/Cbfb heterodimers play important roles in the development of hematopoietic cells in mouse embryos and adults. In order to identify genes that are regulated by Runx/Cbfb, we purified Lin c-kit+ Sca1+ (LSK) cells and Lin c-kit+ Sca1 CD16/32+ (GMP) cells from Vav1-iCre x Cbfb(F/F) and Vav1-iCre x Cbfb(F/+) mice and profiled gene expression using microarray.
Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder.
Specimen part
View SamplesCurrent systems for conditional gene deletion within mouse macrophage lineages are limited by ectopic activity or low efficiency; we generated a Mafb-driven Cre strain to determine whether any dendritic cells (DCs) identified by Zbtb46-GFP expression originate from a Mafb-expressing population
Mafb lineage tracing to distinguish macrophages from other immune lineages reveals dual identity of Langerhans cells.
Specimen part
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part
View SamplesCross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View SamplesCross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View Samples