We purified by magnet assisted cell sorting microglial cells from brains of adult Rab7 null mutant, aged mice and respective controls, isolated total RNA and performed RNAseq to determine the transciptome profiles. Overall design: Examination of transcriptomes of Rab7 null mutants and control (2 replicates each) and aged mice and young controls (3 replicates each)
Age-related myelin degradation burdens the clearance function of microglia during aging.
Age, Specimen part, Cell line, Subject
View SamplesMicroRNAs (miRNAs) are small non-protein-coding RNAs that are incorporated into the RNA-induced silencing complex (RISC) and inhibit gene expression by regulating the stability and/or the translational efficiency of target mRNAs. Previously, we demonstrated that miR-210 is a key player of endothelial cell (EC) response to hypoxia, modulating EC survival, migration and ability to form capillary like-structures. Moreover, the receptor tyrosine kinase ligand Ephrin-A3 was identified as one functionally relevant target. Since each miRNA regulates hundreds of mRNAs, different approaches were combined to identify new miR-210 targets: a Using target prediction software, 32 new miR-210 potential targets were identified. b The proteomic profiling of miR-210 over-expressing ECs identified 11 proteins that were specifically inhibited by miR-210, either directly or indirectly. c Affymetrix based gene expression profiles identified 51 genes that were both down-modulated by miR-210 over-expression and de-repressed when miR-210 was blocked. Surprisingly, only few genes identified either by proteomics or transcriptomics were recognized as miR-210 targets by target prediction algorithms. However, a low-stringency pairing research revealed enrichment for miR-210 putative binding sites, raising the possibility that these genes were targeted via non-canonical recognition sequences. To clarify this issue, miR-210-loaded RISC was purified by immuno-precipitation along with its mRNA targets. The presence of Ephrin-A3 mRNA in the complex validated this approach. We found that 32 potential targets were indeed enriched in miR-210-loaded RISC, and thus can be considered as genuine miR-210 targets. In keeping with this conclusion, we were able to further validate a sub-set of them by 3UTR-reporter assays. Gene ontology analysis of the targets confirmed the known miR-210 activity in differentiation and cell cycle regulation, highlighting new functions such as involvement in RNA processing, DNA binding, development, membrane trafficking and amino acid catabolism. In conclusion, we validated a multidisciplinary approach for miRNAs target identification and indicated novel molecular mechanisms underpinning miR-210 role in EC response to hypoxia.
An integrated approach for experimental target identification of hypoxia-induced miR-210.
Cell line
View SamplesDNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5 end of genes. Furthermore, we demonstrate that loss of Lsh promotesas well as preventscytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.
Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.
Sex, Age, Specimen part, Treatment, Subject
View SamplesCoenzyme Q10 deficiency syndrome includes a clinically heterogeneous group of mitochondrial diseases characterized by low content of CoQ10 in tissues. The only currently available treatment is supplementation with CoQ10, which improves the clinical phenotype in some patients but does not reverse established damage. We analyzed the transcriptome profiles of fibroblasts from different patients irrespective of the genetic origin of the disease. These cells showed a survival genetic profile apt at maintaining growth and undifferentiated phenotype, promoting anti-apoptotic pathways, and favoring bioenergetics supported by glycolysis and low lipid metabolism. WE conclude that the mitochondrial dysfunction caused byCoQ10 deficiency induces a stable survival adaptation of somatic cells from patients.
Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.
Sex, Specimen part, Treatment
View SamplesCoenzyme Q10 deficiency syndrome includes a clinically heterogeneous group of mitochondrial diseases characterized by low content of CoQ10 in tissues. The only currently available treatment is supplementation with CoQ10, which improves the clinical phenotype in some patients but does not reverse established damage.
Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies.
Sex, Age, Treatment, Subject
View SamplesDNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5 end of genes. Furthermore, we demonstrate that loss of Lsh promotesas well as preventscytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.
Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences.
Specimen part
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vSMC from the descending aorta of 14.5 embryos Wild type (WT), SMC Jag1-heterozygous (HTZ) and SMC Jag1-null (KO) was generated by deep sequencing, in duplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesAcquisition and maintenance of vascular smooth muscle fate is essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMC) can result in structural alterations associated with aneurysms and vascular wall calcifications. Here we report that maturation of sclerotome-derived vSMC is dependent on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time point, Jag1-mediated repression of sclerotome transcription factors Pax1, scleraxis and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMC antagonizes sclerotome and cartilage transcription factors, and promotes upregulation of contractile genes. In the absence of Jag1, vSMC acquire a chondrocytic transcriptional repertoire that can lead to ossification of the vascular wall. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming and promote vascular wall integrity. Overall design: mRNA profile of vascular Smooth Muscle Cells, isolated from the descending aorta of Immorto mouse, treated or not with gamma-secretase inhibitor was generated by deep sequencing, in triplicate.
Repression of Sox9 by Jag1 is continuously required to suppress the default chondrogenic fate of vascular smooth muscle cells.
No sample metadata fields
View SamplesTo investigate maternal whole blood gene expression profiles associated with spontaneous preterm birth (SPTB, <37 weeks) in asymptomatic pregnant women.
Maternal Whole Blood Gene Expression at 18 and 28 Weeks of Gestation Associated with Spontaneous Preterm Birth in Asymptomatic Women.
Specimen part, Subject
View Samples