We analyzed the C. elegans small RNA response to high copy transgene sequences expressed in the soma in a wild type and an eri-6/7 mutant background. We also analyzed small RNA defects in the arl-8(tm2472) mutant. Transgene siRNAs are 22 nt long, mostly antisense, and correspond to the promoter, coding regions, the 3''UTR and plamsid sequences present on the transgene. Transgene siRNAs are decreased in the eri-6/7 mutant. In the arl-8 mutant, 26G siRNAs in the ALG-3/4 dependent endogenous RNAi pathway are decreased. Overall design: Sequencing small RNAs from C. elegans transgenic strains and mutants.
Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans.
Specimen part, Cell line, Subject
View SamplesThe clinical presentation, course and treatment of methamphetamine-associated psychosis (MAP) are similar to that observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of SCZ. However, several challenges currently exist in accurately diagnosing MAP at the molecular and neurocognitive level before the MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects diagnosed with MAP (N=10), METH-dependency without psychosis (MA) (N=10) and healthy controls (N=10). We used RNA-Sequencing gene expression to characterize molecular signatures associated to METH and MAP status compared to healthy control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 10 MAP subjects, 10 subjects with METH-dependency without psychotic symptomics and 10 healthy controls.
Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report.
No sample metadata fields
View SamplesPrenatal exposure to maternal stress and depression has been identified as a risk factor for adverse behavioral and neurodevelopmental outcomes in early childhood. However, the molecular mechanisms through which maternal psychopathology shapes offspring development remain poorly understood. We analyzed transcriptome-wide gene expression profiles of 149 UCB samples from neonates born to mothers with prenatal PTSD (n=20), depression (n=31) and PTSD with comorbid depression (PTSD/Dep; n=13), compared to neonates born to carefully matched trauma exposed controls without meeting PTSD criteria (TE; n=23) and healthy mothers (n=62). We also evaluated physiological and developmental measures in these infants at birth, six months and twenty-four months. A multistep analytic approach was used that specifically sought to: 1) identify dysregulated genes, molecular pathways and discrete groups of co-regulated gene modules in UCB associated with prenatal maternal psychopathologies; and 2) to determine the impact of perinatal PTSD and depression on early childhood development outcomes.
Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes.
Specimen part
View SamplesTo characterize the role of the ERI-6/7 helicase in endogenous small RNA pathways in C. elegans, small RNA populations from null alleles of eri-6 and eri-7, and from mutants of known endogenous RNAi pathway factors, eri-1 and ergo-1, were determined by deep sequencing, and compared to wild type. Overall design: Small RNA analysis in wild type and eri-1, ergo-1, eri-6 and eri-7 mutant C. elegans strains.
The ERI-6/7 helicase acts at the first stage of an siRNA amplification pathway that targets recent gene duplications.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Specimen part, Subject, Time
View SamplesThe molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD. We used RNA-Sequencing gene expression to characterize both prognostic and diagnostic molecular signatures associated to PTSD risk and PTSD status compared to control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 94 service members both prior-to and following-deployment to conflict zones. Half of the subjects returned with Post-traumatic stress disorder (PTSD), while the other half did not.
Gene networks specific for innate immunity define post-traumatic stress disorder.
No sample metadata fields
View SamplesThe molecular factors involved in the development of Post-traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network-based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Specimen part, Subject, Time
View SamplesChromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene occur in primary and treatment-related leukemias, and confer a poor prognosis. Studies based primarily on mouse models have substantially advanced our understanding of MLL leukemia pathogenesis, but often employ supra-physiologic oncogene expression with uncertain implications for human leukemia. Genome editing using site-specific nucleases provides a powerful new technology for gene modification to potentially model human disease, however this approach has not been used to recreate acute leukemia in human cells of origin comparable to disease observed in patients. We applied TALEN-mediated genome editing to generate endogenous MLL-AF9 and MLL-ENL oncogenes through insertional mutagenesis in primary human hematopoietic stem and progenitor cells (HSPCs) derived from human umbilical cord blood. Engineered HSPCs displayed altered in vitro growth potentials and induced acute leukemias following transplantation in immuno-compromised mice at a mean latency of 14.5 weeks. The leukemias displayed phenotypic and morphologic similarities with patient leukemia blasts including a subset with mixed phenotype, a distinctive feature seen in clinical disease. The leukemic blasts expressed an MLL-associated transcriptional program with elevated levels of crucial MLL target genes, displayed heightened sensitivity to DOT1L inhibition, and demonstrated increased oncogenic potential ex vivo and in secondary transplant assays. Thus, genome editing to create endogenous MLL oncogenes in primary human HSPCs faithfully models acute MLL-rearranged leukemia and provides an experimental platform for prospective studies of leukemia initiation and stem cell biology in a genetic subtype of poor prognosis leukemia.
MLL leukemia induction by genome editing of human CD34+ hematopoietic cells.
Specimen part
View SamplesThis data series contains small RNA high-throughput sequencing data for each of the mutator class genes. Samples are from stage-matched adult C. elegans grown at 20°C. Overall design: Small RNAs were isolated from synchronized wild type and mutant C. elegans and subjected to Illumina HiSeq sequencing. The series contains fastq and tab-separated files for 19 libraries.
MUT-14 and SMUT-1 DEAD box RNA helicases have overlapping roles in germline RNAi and endogenous siRNA formation.
Cell line, Subject
View SamplesBackground: Mycobacterium tuberculosis infection is a leading cause of infectious death worldwide. Gene-expression microarray studies profiling the blood transcriptional response of tuberculosis (TB) patients have been undertaken in order to better understand the host immune response as well as to identify potential biomarkers of disease. To date most of these studies have focused on pulmonary TB patients with gene-expression profiles of extra-pulmonary TB patients yet to be compared to those of patients with pulmonary TB or sarcoidosis.
The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis.
Sex, Age, Specimen part, Disease, Disease stage, Race
View Samples