This SuperSeries is composed of the SubSeries listed below.
Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.
Cell line, Treatment, Time
View SamplesThe transcriptomic changes induced in the human liver cell line HepG2 by 7M of cisplatin after treatment for 12, 24 and 48h
Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.
Cell line, Treatment, Time
View SamplesThe transcriptomic changes induced in primary mouse hepatocytes (C57BL/6 ) by 7M of cisplatin after treatment for 24 and 48h
Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.
Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
Specimen part, Compound
View SamplesThe well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.
Specimen part, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.
Specimen part, Compound
View SamplesThe study investigated differential gene expression in primary mouse hepatocyte mRNA following 24 and 48 hours of exposure to aflatoxin B1, cisplatin, benzo(a)pyrene, 2,3,7,8-tetrachloordibenzo-p-dioxine, cyclosporin A or Wy-14,643 or their responsive solvent. Three (four for Wy-14,643) biological replicates per compound/solvent.
Evaluating microRNA profiles reveals discriminative responses following genotoxic or non-genotoxic carcinogen exposure in primary mouse hepatocytes.
Specimen part, Compound
View SamplesThe transcriptomics changes induced in the human liver cell line HepG2 by 17 hepatotoxic compounds, 5 non-hepatotoxic compounds and solvent controls after treatment for 24h
Classification of hepatotoxicants using HepG2 cells: A proof of principle study.
Specimen part, Cell line
View SamplesThe amino acid homocysteine increases in the serum when there is insufficient folic acid or vitamin B12, or with certain mutations in enzymes important in methionine metabolism. Elevated homocysteine is related to increased risk for cardiovascular and other diseases in adults and elevated maternal homocysteine increases the risk for certain congenital defects, especially those that result from abnormal development of the neural crest and neural tube. Experiments with the avian embryo model have shown that elevated homocysteine perturbs neural crest / neural tube migration in vitro and in vivo. While there have been numerous studies of homocysteine-induced changes in gene expression in adult cells, there is no previous report of a homocysteine-responsive transcriptome in the embryonic neural crest. We treated neural crest cells in vitro with exogenous homocysteine in a protocol that induces significant changes in neural crest cell migration. We used microarray analysis and expression profiling to identify 65 transcripts of genes of known function that were altered by homocysteine. The largest set of effected genes (19) included those with a role in cell migration and adhesion. Other major groups were genes involved in metabolism (13); DNA / RNA interaction (11); cell proliferation / apoptosis (10); and transporter / receptor (6). Although the genes identified in this experiment were consistent with prior observations of the effect of homocysteine upon neural crest cell function, none had been identified previously as response to homocysteine in adult cells.
Microarray analysis of homocysteine-responsive genes in cardiac neural crest cells in vitro.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic mechanisms underlying arsenic-associated lung carcinogenesis.
Specimen part, Disease, Treatment, Time
View Samples