Human skin-derived precursor cells (hSKP) are a post natal stem cell population isolated from the dermis. These cells acquire hepatic characteristics upon differentiation with hepatogenic factors. Differentiated hSKP show characteristics of hepatocyte precursor cells and respond to hepatotoxic compounds in a comparable way as human hepatocyte cultures.
In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells.
Sex, Specimen part
View SamplesIntroduction: Sepsis is a complex immunological response to infection characterized by early hyperinflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on SIRS differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing.
Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis.
Specimen part
View SamplesThe study was designed to identify differential expressed genes between human oral cavity carcinoma cell lines with and without LDBI knockout Overall design: Three parental human oral cavity carcinoma cell lines were used as control, LDB1 was knocked out in the three parent cell lines to create KO cell lines.
LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer).
No sample metadata fields
View SamplesHuman skin-derived precursor cells (hSKP) are a stem cell population that represents key candidates for cell based-therapy. Inflammation, however, is often present in situations where cellular replacement therapy is required. These inflammatory conditions, and more specifically the presence of the cytokine interferon (IFN)-, might result in an increase of MHC class II antigens in hSKP-derived grafts and facilitate their rejection.
Human skin-derived precursor cells are poorly immunogenic and modulate the allogeneic immune response.
Sex, Age, Specimen part
View SamplesY-chromosome aneuploidy strains were generated for 2 distinct Y chromosomes (Ycongo and Yohio), and expression profile analyzed by RNA-seq. Overall design: CONTRAST 1: X^X (control) vs X^XYohio; CONTRAST 2: X^X (control) vs X^XYcongo; CONTRAST 3: X^Y (control) vs X^YYohio; CONTRAST 4: X^Y (control) vs X^YYcongo.
The Y Chromosome Modulates Splicing and Sex-Biased Intron Retention Rates in <i>Drosophila</i>.
Sex, Specimen part, Subject
View SamplesBackground: Systemic inflammation is a whole body reaction that can have an infection-positive (i.e. sepsis) or infection-negative origin. It is important to distinguish between septic and non-septic presentations early and reliably, because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on a small number of RNAs expressed in peripheral blood could be discovered that would: 1) determine which patients with systemic inflammation had sepsis; 2) be robust across independent patient cohorts; 3) be insensitive to disease severity; and 4) provide diagnostic utility. The overall goal of this study was to identify and validate such a molecular classifier. Methods and Findings: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICU). Biomarker discovery was conducted with an Australian cohort (n = 105) consisting of sepsis patients and post -surgical patients with infection-negative systemic inflammation. Using this cohort, a four-gene classifier consisting of a combination of CEACAM4, LAMP1, PLA2G7 and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte Lab, was externally validated using RT-qPCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Cohort 1 (n=59) consisted of unambiguous septic cases and infection-negative systemic inflammation controls; SeptiCyte Lab gave an area under curve (AUC) of 0.96 (95% CI: 0.91-1.00). ROC analysis of a more heterogeneous group of patients (Cohorts 2-5; 249 patients after excluding 37 patients with infection likelihood possible) gave an AUC of 0.89 (95% CI: 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility o f SeptiCyte Lab was evaluated by comparison to various clinical and laboratory parameters that would be available to a clinician within 24 hours of ICU admission. SeptiCyte Lab was significantly better at differentiating sepsis from infection-negative systemic inflammation than all tested parameters, both singly and in various logistic combinations. SeptiCyte Lab more than halved the diagnostic error rate compared to PCT in all tested cohorts or cohort combinations. Conclusions: SeptiCyte Lab is a rapid molecular assay that may be clinically useful in the management of ICU patients with systemic inflammation.
A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.
Sex, Specimen part
View SamplesTranscriptomic comparison of 5 cell types during lethal and non-lethal influenza infection and further use of these signatures in a top-down systems analysis investigating the relative pathogenic contributions of direct viral damage to lung epithelium vs. dysregulated immunity during lethal influenza infection.
A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection.
Sex, Specimen part
View SamplesEnsuring cooperation among formerly autonomous cells has been a central challenge in the evolution of multicellular organisms. One solution is monoclonality, but this option does not eliminate genetic and epigenetic variability, leaving room for exploitative behavior. We therefore hypothesized that embryonic development must be protected by robust regulatory mechanisms that prevent aberrant clones from superseding wild-type cells. Using a genome-wide screen in murine induced pluripotent stem cells, we identified a network of genes (centered on p53, topoisomerase 1, and olfactory receptors) whose downregulation caused the cells to replace wild-type cells, both in vitro and in the mouse embryowithout perturbing normal development. These genes thus appear to fulfill an unexpected role in fostering cell cooperation.
Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen.
Specimen part, Treatment
View SamplesCaspases are cysteine-proteases with key roles in the execution phase of apoptosis. Additional cellular activities, unrelated to cell death seem to be influenced by these enzymes. Identification of genes co-regulated with caspases could help to ascertain new biological roles for these proteases.To identify genes and pathways under the influence of caspase-2 we silenced its expression in U87MG glioblastoma cell line. Transcriptional expression profiles of cells transfected with caspase-2 siRNA or control siRNA were compared.
Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain.
Cell line, Treatment
View Samples