In order to elucidate the molecular mechanism giving rise to the rare In(Lu) type of Lu(a-b-) blood group phenotype we compared the transcriptome of normal and In(Lu) erythroblasts at different stages of maturation. Many erythroid-specific genes had reduced transcript levels suggesting the phenotype resulted from a transcription factor abnormality. A search for mutations in erythroid transcription factors revealed mutations in the promoter or coding sequence of EKLF in 21 of 24 individuals with the In(Lu) phenotype. In all cases the mutant EKLF allele occurred in the presence of a normal EKLF allele. Individuals with the In(Lu) phenotype have no reported pathology indicating that one functional EKLF allele is sufficient to sustain human erythropoiesis. These data provide the first description of inactivating mutations in human EKLF and the first demonstration of a blood group phenotype resulting from mutations in a transcription factor.
Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype.
No sample metadata fields
View SamplesWe report the application of bi-species RNAseq for investigating mechanisms of reprogramming towards pluripotency using heterokaryons (mouse embryonic stem cell X human fibroblast cell fusions). The use of mixed species allows one to monitor reprogramming of the human somatic nuclei independently of contributions from the mouse nuclei using nucleotide differences. We used RNAseq to monitor heterokaryon reprogramming over a 3-day timecourse, generating transcriptome-wide data for cell fusion based reprogramming of human fibroblasts towards pluripotency. Overall design: Examination of cellular reprogramming over a heterokaryon timecourse (mouse embryonic stem cells X human fibroblasts)
Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq.
Disease, Subject, Time
View SamplesWe used microarrays to measure the expression levels of genes in irradiated immortalized B cells, lymphoblastoid cells, from members of Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees. Data were collected for cells at baseline and 2 hours and 6 hours after exposure to 10 Gy of ionizing radiation (IR).
Genetic variation in radiation-induced cell death.
Specimen part, Treatment
View SamplesBackground
Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs.
Specimen part, Treatment, Time
View SamplesWe used heterokaryon cell fusion based reprogramming and identified the cytokine IL6 as a potential regulator of reprogramming to pluripotency. We generated iPS clones using the four reprogramming factors (4F) Oct4, Klf4, Sox2, and c-Myc. In addition, iPS clones were generated using only three factors (3F: Oct4, Klf4, amd Sox2) with the addition of the cytokine IL6 to reprogramming culture conditions. Global RNA-Seq of the 3F + IL6 derived iPS clones was done for comparison with 4F-derived iPS clones, mouse embryonic stem cells and mouse embryonic fibroblasts. Overall design: This study includes 8 samples: 2 independently derived 3F + IL6 iPS clones, 2 independently derived 4F iPS clones, 2 biological replicates of mouse D3-GFP ES cells, and 2 biological replicates of mouse embryonic fibroblasts (MEFs). The latter 6 samples are provided as references for the 3F + IL6 iPS clones. Poly-A RNA was isolated and prepared for sequencing using the Illumina TruSeq RNA kit (v2) to generate 50bp reads. Reads were aligned to mm10.
NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
Specimen part, Treatment, Subject
View SamplesE4bp4 is essential for the development of natural killer (NK) cells. We sought to identify downstream targets of E4bp4 by comparing mRNA expression in wild type vs. E4bp4 knockout
The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression.
Specimen part
View SamplesEpithelial tip progenitor cells are an important epithelial progenitor population in the developing lung. At early stages of development they produce SOX2+ bronchiolar progenitor cells. At later stages of embryonic lung development they produce SOX2- alveolar progenitor cells.
Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate.
Specimen part
View SamplesTranscriptional programs that regulate development are exquisitely controlled in space and time. Elucidating these programs that underlie development is essential to understanding the acquisition of cell and tissue identity. We present microarray expression profiles of a high resolution set of developmental time points within a single Arabidopsis root, and a comprehensive map of nearly all root cell-types. These cell-type specific transcriptional signatures often predict novel cellular functions. A computational pipeline identified dominant expression patterns that demonstrate transcriptional connections between disparate cell types. Dominant expression patterns along the roots longitudinal axis do not strictly correlate with previously defined developmental zones, and in many cases, expression fluctuation along this axis was observed. Both robust co-regulation of gene expression and potential phasing of gene expression were identified between individual roots. Methods that combine these two sets of profiles demonstrate transcriptionally rich and complex programs that define Arabidopsis root development in both space and time.
A high-resolution root spatiotemporal map reveals dominant expression patterns.
No sample metadata fields
View SamplesThe human hair follicle bulge is an important niche for keratinocyte stem cells (KSC). Elucidation of human bulge cell biology could be facilitated by analysis of global gene expression profiles and identification of unique cell surface markers. The lack of distinctive bulge morphology in human hair follicles has hampered studies of bulge cells and KSC. In this study, we determined the distribution of label-retaining cells to carefully define the human anagen bulge. Using navigated-laser capture microdissection, bulge cells and outer root sheath cells from other follicle regions were obtained and analyzed with cDNA microarrays. Gene transcripts encoding inhibitors of WNT and Activin/BMP signaling were over-represented in the bulge while genes responsible for cell proliferation were under-represented, consistent with quiescent non-cycling KSC in anagen follicles. Positive markers for bulge cells included CD200, PHLDA1, follistatin, and frizzled homolog 1 while CD24, 34, 71 and 146 were preferentially expressed by non-bulge keratinocytes. Importantly, CD200+ cells (CD200hi24lo34lo71lo146lo) obtained from hair follicle suspensions demonstrated high colony forming efficiency in clonogenic assays, indicating successful enrichment of living human bulge stem cells.
Characterization and isolation of stem cell-enriched human hair follicle bulge cells.
No sample metadata fields
View SamplesSandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of b-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells with CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids but not the HEXB-corrected organoids accumulated GM2 ganglioside, and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses Overall design: Sandhoff disease and corrected cerebral organoids grown for 8 and 10 weeks were analyzed: four samples at each time point, each consisting of 4–6 pooled organoids, for both Sandhoff and corrected. Whole transcriptome from Sandhoff disease and corrected organoids for both time points were generated by deep sequencing on an Illumina HiSeq 2500.
Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.
Specimen part, Subject
View Samples