Tumour hypoxia exhibits a highly dynamic spatial and temporal distribution and is associated with increased malignancy and poor prognosis.
Two phases of disulfide bond formation have differing requirements for oxygen.
Treatment
View SamplesRibosome Profiling was employed to learn about Ribosome A-site occupancies in response to uL11 siRNA treatment or scrambled siRNA treatment in Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Overall design: Ribosome Profiling of cells 96h after siRNA transfection
Slowing ribosome velocity restores folding and function of mutant CFTR.
Specimen part, Subject
View SamplesThe tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells -- including inhibition of the mitochondrial ribosome -- there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation and alter cell cycle progression in vitro. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.
Doxycycline alters metabolism and proliferation of human cell lines.
Specimen part, Cell line, Treatment
View SamplesThe balance between glycolytic and oxidative metabolism shifts during differentiation of human embryonic stem cells (hESCs) and during reprogramming of somatic cells into pluripotent stem cells. However the contribution of glycolytic metabolism to various stages of pluripotency is not well understood. Additionally, few tools have been developed that modulate pluripotent stem cell glycolytic metabolism to influence self-renewal or differentiation. Here we show that the degree of human pluripotency is associated with glycolytic rate, whereby naive hESCs exhibit higher glycolytic flux, increased MYC transcriptional activity, and elevated nuclear N-MYC levels relative to primed hESCs. Consistently, the inner cell mass of human blastocysts also exhibits increased MYC transcriptional activity relative to primed hESCs and elevated nuclear N-MYC levels. Expression of the lactate transporter, monocarboxylate transporter 1 (MCT1), is strongly associated with the pluripotent state, and reduction of glycolysis using a small molecule inhibitor towards MCT1 decreases self-renewal of nave hESCs and feeder-free cultured primed hESCs, but not that of primed hESCs grown in feeder-supported conditions. Lastly, reduction of glycolytic metabolism via MCT1 inhibition in feeder-free primed hESCs enhances neural lineage specification. These findings validate the association between glycolytic metabolism and pluripotency, reveal differences in the glucose metabolism of feeder- versus feeder-free cultured hESCs, and show that pharmacologic regulation of glycolysis can influence self-renewal and initial cell fate specification of human pluripotent stem cells.
Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State.
Cell line, Treatment
View SamplesAdenovirus infection leads to increased glycolytic metabolism in host cells. Expression of a single gene product encoded within the E4 early transcription region, E4ORF1, is sufficient to promote increased glycolytic flux in cultured epithelial cells.
Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.
Cell line
View SamplesFor up to 70 weeks we subcutaneuously injected two hundered p53R270HWAPCre mice to different insulin-like molecules (regular insulin, insulin glargine, insulin X10 (of AspB10), IGF1 or vehicle solution). Due to the mammary gland specific p53 mutation the p53R270HWAPCre mice will develop spontanously human like mammary gland tumors in about a year. We found that frequent injections to insulin like molecules decreased the mammary gland tumor latency time in this model. Next we mRNA seqeunced tumors to reveal the underlying mechanisms for the increased tumor progression. For the next generation experiment we isolated mRNA from 50 tumors (10 tumors of each stimulation group) and sequenced with the IonTorrent (40 mil reads, on average 100 bp reads) Overall design: RNA expression profiles of 50 mammary gland tumors were analyzed, 10 tumors per treatment group (chronic insulin, glargine, x10, IGF1 or vehicle exposure)
Insulin-like growth factor 1 receptor activation promotes mammary gland tumor development by increasing glycolysis and promoting biomass production.
Specimen part, Cell line, Subject
View SamplesTranscriptome analysis of 12 zebrafish tissues
Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
No sample metadata fields
View SamplesDevelopment of systems allowing the maintenance of native properties of mesenchymal stromal cells (MSC) is a critical challenge for studying physiological functions of skeletal progenitors, as well as towards cellular therapy and regenerative medicine applications. Conventional stem cell culture in monolayer on plastic dishes (2D) is associated with progressive loss of functionality, likely due to the absence of a biomimetic microenvironment and the selection of adherent populations. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow cells within the pores of 3D scaffolds in a perfusion-based bioreactor system, followed by enzymatic digestion for cell retrieval. The 3D-perfusion system supported MSC growth while maintaining cells of the hematopoietic lineage, and thus generated a cellular environment mimicking some features of the bone marrow stroma. As compared to 2D-expansion, sorted CD45- cells derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) maintained a 4.3-fold higher clonogenicity and exhibited a superior differentiation capacity towards all typical mesenchymal lineages, with similar immunomodulatory function in vitro. Transcriptomic analysis performed on MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability as well as a significant upregulation of multipotency-related gene clusters following 3D-perfusion as compared to 2D expansion. The described system offers a model to study how factors of a 3D engineered niche may regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.
Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.
No sample metadata fields
View SamplesWe analyzed the global transcriptome signature over the time course of the cardiac differentiation from hESC by RNA-seq. We characterized the genome-wide transcriptome profile of 5 distinct stages; undifferentiated hESC (day 0), mesodermal precursor stage (hMP, day 2), cardiac progenitor stage (hCP, day 5), immature cardiomyocyte (hCM14) and hESC-CMS differentiated for 14 additional days (hCM28). While the stem cell signature decreases over the five stages, the signatures associated with heart and smooth muscle development increase, indicating the efficient cardiac differentiation of our protocol. Overall design: Five different temporal samples, two replicates for only first four samples day 0 through day 15
Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.
Specimen part, Subject
View SamplesPpp2r1afl/fl mouse bone marrow pre-B cells were transduced with an BCR-ABL1 vector. The BCR-ABL1 transduced Ppp2r1afl/fl pre-B cells were then transduced with an empty vector (EV), or a Cre vector for Cre-mediated PP2A deletion. Effect of PP2A deletion in the BCR-ABL1 pre-B cells were studied by Affymetrix GeneChip Mouse Genome ST1.0 Array
B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies.
Specimen part
View Samples