The human nm23-H1 was discovered as a tumor metastasis suppressor based on its reduced expression in melanoma cell lines with low versus high metastatic potential. It encodes for one of two subunits of the nucleoside-diphosphate kinase. Besides its role in the maintenance of the cells NTP pool, nm23 plays a key role in different cellular processes. The role of nm23-H1 in these processes still has to be elucidated. Our goal was to identify Nm23-H1 downstream targets by subjecting Nm23-H1 overexpressing CAL 27 cells oral squamous cell carcinoma (OSSC) to microarray analysis. The genes with changed expression patterns could be clustered into several groups: transforming growth factor (TGF) signaling pathway, cell adhesion, invasion and motility, proteasome machinery, cell-cycle, epithelial structural and related molecules and others. Based on the expression patterns observed we presume that nm23-H1 might have a role in OSSCs, which should be confirmed by future experiments.
Downstream targets of Nm23-H1: gene expression profiling of CAL 27 cells using DNA microarray.
Specimen part, Disease, Disease stage, Cell line
View SamplesFNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.
FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.
Sex, Specimen part, Treatment
View SamplesPurpose: Breeding for gibberella ear rot resistance have been challenging due to the high complexity of the trait. The current study attempts to characterize defence responses to Fusarium graminearum infection in two maize inbred lines with different levels of resistance to the pathogen. Methods: RNA was extracted from developing kernels of two inbred lines, which had been either fungal (F. graminearum DAOM180378) or mock inoculated 11 days post sibcrossing, using a guanidine isothiocyanate method and ultra-centrifugation with cesium chloride. Isolated RNA was used to quantify whole genome gene expression using RNA-seq (Illumina TruSeq RNA library prep kit v2, Illumina HiSeq 2000). Paired end reads generated from RNA-seq were trimmed of adaptors and low quality reads, aligned with the B73 reference genome sequence version 2, expression levels (TPM) were computed and differential gene expression analysis were performed using CLC Genomics Workbench version 9. Results: Gene transcripts responding to fungal infection were captured by comparing gene expression levels in mock and fungal inoculated maize ears and gene ontology terms associated with significantly up-regulated gene transcripts were determined for each inbred. More genes were up regulated in the susceptible inbred relative to the resistant inbred, many of which are associated with oxidation-reduction processes potentially causing earlier programmed cell death in the susceptible inbred. Conclusions: This information helped to identify gene transcripts that were relevant in defense responses with potential applicability in routine breeding efforts and to propose an effective GER resistance mechanism. Overall design: The experiment consisted of 16 RNA samples from two inbreds (B73 and CO441) tested over two years (2004 and 2006), two treatments (mock and fungal) and two sampling times (1 and 2 days after inoculation).
Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
Specimen part, Treatment, Subject
View SamplesBackground: The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called intestinal barrier proteins. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPAR), which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPAR on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPAR-null mice. Treatment with the synthetic PPAR agonist WY14643 served as reference.
PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression.
No sample metadata fields
View SamplesWe studied the effect of dietary fat type, varying in polyunsaturated/saturated fatty acid ratio's (P/S) on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1) or safflower oil (HF-SO; P/S 7.8) for 8 weeks. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared to the HF-OO, HF-SO or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes/Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis.
Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine.
Sex, Specimen part
View SamplesBRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance, which is frequently caused by reactivation of the Mitogen Activated Protein Kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor (HDACi) vorinostat represses SLC7A11 that leads to a lethal increase in the already elevated levels of ROS in drug-resistant cells, thereby causing selective apoptotic death of only the drug resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with HDACi in mice results in a dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor resistant melanoma, we find that HDACi can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here. Overall design: one replicate of RNA Seq data A375, A375R, A375DR vorinostat treated and patient samples pre- post- vorinostat treatment
An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential.
Specimen part, Disease, Disease stage, Cell line, Treatment, Subject
View SamplesThe goal of this study is to compare gene expression profiles in quiescent RPE1 hTert cells treated with microtubule-stabilizing (paclitaxel) and microtubule-destabilizing poisons (combretastatin A4) Overall design: RPE 1 hTert cells were grown to full confluency, and maintained as such for 5 days to induce quiescence. Quiescent cells were treated with microtubule poisons combretastatin A4 and paclitaxel for 6 or 24 hours. Total RNA was collected and purified using the PureLink RNA Mini Kit (Invitrogen, Thermo Fisher Scientific, USA). RNA concentration and quality were determined using NanoDrop and Bioanalyzer respectively, and 500 ng of purified RNA was used as input for the Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina, USA). Barcoded libraries were pooled and quantitated using KAPA, and single-end sequenced on an Illumina NextSeq (Illumina, USA). RNA-seq reads were mapped using STAR (version 2.1.0j) and processed using HTSeq-count (version 0.6.1). GRCh38 reference genome and transcript annotations were used for gene mapping; Entrez Gene identifiers and org.Hs.eg.db database were used for genome wide annotation. Differential gene expression and statistical analysis were performed using edgeR package. Genes with >50 reads per million and a fold change significantly different from zero in Wilcoxon signed-rank test (p< 0.05), were marked as differentially expressed genes, based on three biological replicates.
Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues.
Specimen part, Subject
View SamplesCD8+ T cells are pre-programmed for cytotoxic differentiation. However, a subset of effector CD8+ T cells (Tc17) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok. We further show that STAT3 restrained cytotoxic gene expression in CD8+ T cells and that RORgt represses cytotoxic genes by inhibiting the functions but not the expression of the cytotoxic transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions.
A STAT3-dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells.
Specimen part
View SamplesStudied gene regulation in bronchial smooth muscle cells following vitamin D stimulation.
1alpha,25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes.
Sex, Age, Specimen part, Race
View SamplesCD8+ T cells are pre-programmed for cytotoxic differentiation. However, a subset of effector CD8+ T cells (Tc17) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok. We further show that STAT3 restrained cytotoxic gene expression in CD8+ T cells and that RORgt represses cytotoxic genes by inhibiting the functions but not the expression of the cytotoxic transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions.
A STAT3-dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells.
Specimen part
View Samples