Transcriptional microarray analysis was conducted on gastrocnemius muscle of control and PGC-1(i)skm-/- mice one week after the last tamoxifen administration using the Affymetrix Mouse Gene 1.0 ST.
The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles.
Specimen part
View SamplesIn this study, we used the Affymetrix HG-U133A 2.0 GeneChip for deriving a multigenic classifier capable of predicting HCV+cirrhosis with vs without concomitant HCC.
Identifying genes for establishing a multigenic test for hepatocellular carcinoma surveillance in hepatitis C virus-positive cirrhotic patients.
Specimen part, Disease, Disease stage
View SamplesStudies have shown that vitamin D can enhance glucose-stimulated insulin secretion (GSIS) and change the expression of genes in pancreatic β-cells. Still the mechanisms linking vitamin D and GSIS are unknown.
Vitamin D metabolites influence expression of genes concerning cellular viability and function in insulin producing β-cells (INS1E).
Specimen part, Cell line, Treatment
View SamplesDuring hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into distinct cell fates are not fully understood. Here, we identify chromatin-regulating and cell-fate-determining transcription factors (TF) governing dendritic cell (DC) development by annotating the enhancer and promoter landscapes of the DC lineage. Combining these analyses with detailed over-expression, knockdown and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, differential activity of TF can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes. Overall design: Here analyzed 2 experiments, each one contains samples of moDC and pDC ex vivo cultured cells. The first experiment contains 32 samples of moDC and pDC following stimulation with various TLR stimulators. The second experiment contains 8 samples of moDC and pDC following perturbations; Cebpb and Irf8 knock down or over expression.
A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States.
No sample metadata fields
View SamplesThe RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked monogenic disease associating severe learning deficit andassociated to typical facial and digital abnormalities and skeletal changes. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.
RSK2 is a modulator of craniofacial development.
No sample metadata fields
View SamplesThe gene regulatory network in naïve mouse embryonic stem cells (ESCs) must be reconfigured for lineage competence. Tcf3 enables rewiring to formative pluripotency by repressing components of the ESC transcription factor circuitry. However, elimination of Tcf3 only delays, and does not prevent, state transition. Here we delineate distinct contributions of the Ets-family transcription factor Etv5 and the repressor Rbpj. Downstream of Erk1/2 signalling, Etv5 activates enhancers for formative pluripotency. Concomitant up-regulation of Rbpj ensures irreversible exit from the naïve state by extinguishing reversal factors, Nanog and Tbx3. Triple deletion of Etv5, Rbpj and Tcf3 incapacitates ESCs, such that they remain undifferentiated and locked in self-renewal even in the presence of differentiation stimuli. Thus, pluripotency progression is driven hierarchically by two repressors, that respectively dissolve and extinguish the naive network, and an initiator that commissions the formative network. Similar tripartite action may be a general mechanism for efficient cell transitions. Overall design: RNA-seq analysis of parental Rex1-GFPd2 ES cells (RGd2), and deletion mutants generated in this background (Etv5-KO, RbpJ-KO, Etv5-RpbJ-dKO, Etv5-RbpJ-Tcf3-tKO) cultured in 2i, N2B27 or supplemented with Chiron, 3 biological replicates per condition.
Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency.
Subject
View SamplesThe basic helix-loop-helix (bHLH) transcription factor hairy and enhancer of split (Hes3) is a member of the Hes/Hey gene family that regulates developmental processes in progenitor cells from various tissues. We demonstrated the Hes3 expression in mouse pancreatic tissue, suggesting it may have a role in modulating beta-cell function. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed the growth of the mouse insulinoma cell line Min6. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Likewise, Hes3 knock down reduced evoked insulin release from Min6 cells.
Hes3 is expressed in the adult pancreatic islet and regulates gene expression, cell growth, and insulin release.
Specimen part
View SamplesMice of indicated ages and genotypes were perfused and their brains dissected and dissociated. Cells were fixed, immunolabeled and FACS sorted. RNA was extracted from neuron, astrocyte, and microglial cell populations. Typical RIN=4-5 for neurons, 6-8 for astrocytes, and 5-7 for microglia. Typical RNA yields ~100ng for neurons, ~20ng for microglia, and ~10ng for astrocytes. cDNA was generated from up to 25 ng of total RNA using Nugen’s RNA-Seq method for low-input RNA samples, Ovation RNA-Seq System V2 (NuGEN). (Per manufacturers instructions, total RNA was neither depleted of rRNA nor polyA-selected.) 1 µg of sheared cDNA was taken into further processing, starting at end repair step, using Illumina’s TruSeq RNA Sample Preparation Kit v2 (Illumina). The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0006149 Overall design: Astrocytes, microglia and neurons were sorted from 7- or 13-month old PS2APP or non-transgenic mice, 4 = n = 7 per group.
Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.
Age, Specimen part, Subject
View SamplesNormal mice were injected i.p. with LPS or saline. 24h later, perfused brains were dissociated. Cells were fixed, immunolabeled and FACS sorted. RNA was extracted from neuron, astrocyte, and microglial cell populations. Typical RIN=4-5 for neurons, 6-8 for astrocytes, and 5-7 for microglia. Typical RNA yields ~100ng for neurons, ~20ng for microglia, and ~10ng for astrocytes. cDNA was generated from up to 25 ng of total RNA using Nugen''s RNA-Seq method for low-input RNA samples, Ovation RNA-Seq System V2 (NuGEN). (Per manufacturers instructions, total RNA was neither depleted of rRNA nor polyA-selected.) 1 µg of sheared cDNA was taken into further processing, starting at end repair step, using Illumina''s TruSeq RNA Sample Preparation Kit v2 (Illumina). The "SAMID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0005404 Overall design: Astrocytes, microglia and neurons were sorted from LPS or saline treated mice. n=4 or 5 per group.
Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.
Specimen part, Treatment, Subject
View SamplesRNA was purified from intact cerebrocortical tissue of female PS2APP or non-transgenic mice, perfused at 7 or 13 months of age. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0007648 Overall design: RNA from whole cortex of female PS2APP or non-transgenic mice at 7 or 13 months.
Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.
Age, Subject
View Samples