We analyzed the role of the histone lysine methyltransferase Set7/9 in the differentiation of human embryonic stem (ES) cells. Human ES cell lines expressing a control short hairpin and a short hairpin against Set7/9 were established and the genome wide expression profile was compared between both cell lines at different days during differentiation. Analysis of both profiles indicates that in the absence of Set7/9 there is a delay in the silencing of self-renewal factors as well as in the induction of differentiation markers. These results indicate that Set7/9 plays an active role in the differentiation of human ES cells.
SETD7 Regulates the Differentiation of Human Embryonic Stem Cells.
Specimen part, Cell line
View SamplesGene expression of T47D-MTVL human breast cancer cells expressing Dox-inducible shRNAs against histone H1.4 (120sh) or multiple H1 variants (225sh) Overall design: Stable breast cancer-derived cell lines expressing an shRNA against one of each of the histone H1 isoforms in response to doxycycline (Dox) were grown for six days in the presence or absence of Doxicycline, RNA extracted and high-thorughput sequenced. Cell lines used: inducible shRNA against H1.4 or multiple H1 variants and random shRNA-expression vector.
Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats.
Cell line, Subject
View SamplesTranscriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome
Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome.
Specimen part
View SamplesDystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1, a zinc-finger transcription factor, cause DYT6, but its neuronal targets and functions are unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1C54Y or ?Exon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2a Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic Long Term Depression pathways, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays confirmed the functional significance of those findings. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence on the pathogenesis of unrelated forms of inherited dystonia. Overall design: We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1C54Y or deltaExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions.
Specimen part, Cell line, Subject
View SamplesCell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic organ fusions. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.
The FRIABLE1 gene product affects cell adhesion in Arabidopsis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis.
Specimen part
View Samples4T1 mouse mammary carcinoma cells have an autocrine FGFR active loop leading to constitutive activation of downstream signaling pathways. We found that FGFR inhibitors have a strong effect on the proliferation and survival of these cells.
Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis.
Specimen part
View Samples4T1 mouse mammary carcinoma cells have an autocrine FGFR active loop leading to constitutive activation of downstream signaling pathways. We found that FGFR inhibitors have a strong effect on 4T1 tumors in-vivo.
Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.
Sex, Age, Specimen part
View SamplesNK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.
Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.
Sex, Age, Specimen part
View Samples