Luteolysis of the corpus luteum (CL) during non-fertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the primate CL are poorly defined. Therefore, a genomic approach was utilized to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected prior to (days 10-11 post-LH surge, mid-late [ML] stage) or during (days 14-16, late stage) functional regression. Based on P4 levels, late stage CL were subdivided into functional late (FL, serum P4 > 1.5 ng/ml) and functionally-regressed late (FRL, serum P4 < 0.5 ng/ml) groups (n=4 CL/group). Total RNA was isolated, labeled and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; p< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL, 2) decreasing from ML through FRL, and 3) increasing ML to FL, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in 4 of 5 differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.
Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum.
Sex
View SamplesThe molecular and cellular processes required for development, function, and regression of the primate corpus luteum (CL) are poorly defined. We hypothesized that there are dynamic changes in gene expression occurring during the CL lifespan, which represent proteins and pathways critical to its regulation. Therefore, a genomic approach was utilized to systematically identify differentially expressed genes in the rhesus macaque CL during the luteal phase of natural menstrual cycles. CL were collected between days 3-5 (early stage), 7-8 (mid), 10-12 (mid-late), 14-16 (late), or 18-19 (very-late) after the midcycle LH surge. From the early through very-late stages, 3234 transcripts were differentially expressed, with 879 occurring from the early through late stages that encompass the processes of luteinization, maintenance, and functional regression. To characterize gene changes most relevant to these processes, ontology analysis was performed using the list of 879 differentially expressed transcripts. Four main groups of related genes were identified with relevance to luteal physiology including: 1) immune function; 2) hormone and growth factor signaling; 3) steroidogenesis; and 4) prostaglandin biosynthesis, metabolism, and signaling. A subset of genes representing each of the four major categories was selected for validation of microarray results by quantitative real-time PCR. Results in mRNA levels were similar between the two methodologies for 17 of 18 genes. Additionally, protein levels for 3 genes were determined by Western blot analysis to parallel mRNA levels. This database will facilitate the identification of many novel or previously underappreciated pathways that regulate the structure and function of the primate CL.
Systematic determination of differential gene expression in the primate corpus luteum during the luteal phase of the menstrual cycle.
Sex
View SamplesParthenogenetic embryonic stem cells (PESCs) may have future utility in cell replacement therapies. We examined genome-wide mRNA expression profiles of monkey PESCs relative to ESCs derived from fertilized embryos. Several known paternally-imprinted genes were in the highly down-regulated group in PESCs compared to ESCs. Allele specific expression analysis of paternally-imprinted genes, i.e., those genes whose expression is down-regulated in PESCs, led to the identification of one novel candidate that was exclusively expressed from a paternal allele. Our findings suggest that PESCs could be used as a model for studying genomic imprinting and in the discovery of novel imprinted genes.
Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells.
Sex, Specimen part
View SamplesIn order to assess the physiological role of Cop1 in vivo we generated mice that do no longer express the protein. Cop1KO mice die at around E10.5 of embryonic development. In order to gain insights into the molecular mechanisms that cause the embryonic death we compared the genome-wide gene expression profile of E9.5 wild-tytpe and Cop1-null embryos. The data do not support a role for Cop1 in the regulation of the p53 pathway in vivo and highlight a role for Cop1 in cardiovascular development and/or angiogenesis. The abstract of the associated publication is as follows:Biochemical data have suggested conflicting roles for the E3 ubiquitin ligase Cop1 in tumourigenesis. Here we present the first in vivo investigation of the role of Cop1 in cancer aetiology. We used an innovative genetic approach to generate an allelic series of Cop1 and show that Cop1 hypomorphic mice spontaneously develop malignancy at a high frequency in their first year of life and are highly susceptible to radiation-induced lymphomagenesis. Biochemically, we show that Cop1 regulates c-Jun oncoprotein stability and modulates c-Jun/AP1 transcriptional activity in vivo. Cop1-deficiency stimulates cell proliferation in a c-Jun-dependent manner. We conclude that Cop1 is a tumour suppressor that antagonizes c-Jun oncogenic activity in vivo.
Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice.
Specimen part
View SamplesWe used RNA sequencing to study gene expression in lymph node derived DCs from anaphylactic mice sensitized intranasally with the major peach allergen Pru p 3, during the acute reaction phase, induced intraperitoneally. In total, 237 genes changed significantly, 181 showing at least two-fold changes. Almost three quarters of these increased during anaphylaxis Overall design: 5 Female Balb/c mice aged 4-5 weeks, were sensitized to peach using intranasally administered Pru p 3 in combination with LPS and challenged intraperitoneally as described previously . 5 Littermates, treated with intranasally administered PBS (instead of Pru p 3 and LPS), and later given an intraperitoneal challenge as per the anaphylactic mice, were used for comparison.
Transcriptional Profiling of Dendritic Cells in a Mouse Model of Food-Antigen-Induced Anaphylaxis Reveals the Upregulation of Multiple Immune-Related Pathways.
Sex, Cell line, Treatment, Subject
View SamplesRationale: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity among children. We postulate that severity of RSV infection is influenced in part by modulation of the host immune response by the local microbial ecosystem at the time of infection. Objectives: To define whether different nasopharyngeal microbiota profiles are associated with distinct host transcriptome profiles and severity in children with RSV infection. Methods: We analyzed the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy matched controls by 16S-rRNA sequencing. In parallel, we analyzed whole blood gene expression profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response and clinical disease severity. Measurements and Main results: We identified five nasopharyngeal microbiota profiles characterized by enrichment of H. influenzae, Streptococcus, Corynebacterium, Moraxella or S. aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus, and negatively associated with S. aureus abundance, independent of age. The host response to RSV was defined by overexpression of interferon-related genes, and this was independent of the microbiota composition. On the other hand, transcriptome profiles of RSV infected children with H. influenzae and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to toll-like receptor-signaling and neutrophil activation and were more frequently hospitalized Conclusions: Our data suggest an immunomodulatory role for the resident nasopharyngeal microbial community early in RSV infection, potentially affecting RSV disease severity.
Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.
Sex, Specimen part, Disease, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of biologically relevant enhancers in human erythroid cells.
Specimen part
View SamplesIdentification of cell-type specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. Using chromatin immunoprecipitation followed by massively parallel sequencing, genome-wide maps of candidate enhancers were constructed for p300 and four transcription factors, GATA1, NF-E2, KLF1, and SCL, using primary human erythroid cells. These data were combined with gene expression analyses and candidate enhancers identified. Consistent with their predicted function as candidate enhancers, there was statistically significant enrichment of p300 and combinations of co-localizing erythroid transcription factors within 1-50 kb of the TSS of genes highly expressed in erythroid cells. Candidate enhancers were also enriched near genes with known erythroid cell function or erythroid cell phenotypes. Candidate enhancers exhibited only moderate conservation with mouse and minimal conservation with nonplacental vertebrates. Candidate enhancers were mapped to a data set of erythroid-associated, biologically relevant, SNPs from the GWAS catalog of the NHGRI. Fourteen candidate enhancers, representing 10 genetic loci, mapped to sites associated with biologically relevant erythroid traits. Fragments from these loci directed statistically significant expression in reporter gene assays. Identification of enhancers in human erythroid cells will allow a better understanding of erythroid cell development, differentiation, structure, and function, and provide insights into inherited and acquired hematologic disease.
Identification of biologically relevant enhancers in human erythroid cells.
Specimen part
View SamplesMost vertebrate organs are composed of epithelium surrounded by support and stromal tissues formed from mesenchyme cells, which are not generally thought to form organized progenitor pools. Here we use clonal cell labeling with multicolor reporters to characterize individual mesenchymal progenitors in the developing mouse lung. We observe a diversity of mesenchymal progenitor populations with different locations, movements, and lineage boundaries. Airway smooth muscle (ASM) progenitors map exclusively to mesenchyme ahead of budding airways. Progenitors recruited from these tip pools differentiate into ASM around airway stalks; flanking stalk mesenchyme can be induced to form an ASM niche by a lateral bud or by an airway tip plus focal Wnt signal. Thus, mesenchymal progenitors can be organized into localized and carefully controlled domains that rival epithelial progenitor niches in regulatory sophistication.
Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution.
Specimen part, Treatment
View SamplesThe present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected on presumed different modes of action. The chemicals were administered daily for 14 days at the Lowest-Observed-Adverse-Effect-Level (LOAEL) or at a two- or three-fold lower concentration individually or in binary or ternary mixtures. The compounds had strong antagonistic effects on each others gene expression changes, which included several genes encoding Phase I and II metabolizing enzymes. On the other hand, the mixtures affected the expression of “novel” genes that were not or little affected by the individual compounds. Based on gene expression changes, the three compounds exhibited a synergistic interaction at the LOAEL in the liver and both at the sub-LOAEL and LOAEL in the kidney. Many of the genes induced by mixtures but not by single compounds, such as Id2, Nr2f6, Tnfrsf1a, Ccng1, Mdm2 and Nfkb1 in the liver, are known to affect cellular proliferation, apoptosis and function. This indicates a shift from compound specific response on exposure to individual compounds to a more generic stress response to mixtures. Most of the effects on cell viability as concluded from transcriptomics were not detected by classical toxicological research illustrating the difference in sensitivity of these techniques. These results emphasize the benefit of applying toxicogenomics in mixture interaction studies, which yields biomarkers for joint toxicity and eventually can result in an interaction model for most known toxins.
Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat.
Sex, Age, Specimen part, Treatment, Compound
View Samples