The ability to detect and isolate bGL1-22/LGL1specific human type II NKT cells allowed us to compare the global gene expression profiles of these cells with type I NKT cells using microarray analysis. Principal component analysis revealed that the gene expression profile signature for bGL1-22 and LGL1-specific T cells both before and after activation with anti-CD3/CD28 beads is distinct from that of type I NKT cells.
Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation.
Specimen part
View SamplesTranscriptome analysis of human peripheral blood T cells
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Time
View SamplesTranscriptome analysis of human peripheral blood monocytes
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Subject, Time
View SamplesThe ability to detect and isolate human CD8 TSP (Side population), Nave, Effector memory (EM), Central memory (CM) cells allowed us to compare the global gene expression profiles of these cells. Human TSP cells comprise of distinct gene expression profile specifically enriched for genes overexpressed in TRM cells.
ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells.
Specimen part
View SamplesFusarium Head Blight susceptible barley variety, Morex, was infected with deoxynivalenol production deficient mutant strain (GZT40) and wild type stains (Z3639) of Fusarium graminearum. The RNA was sampled at 48 and 96 hours after inoculation. and was used hybridize to Barley_1 GeneChip. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Jayanand Boddu. The equivalent experiment is BB52 at PLEXdb.]
Transcriptome analysis of trichothecene-induced gene expression in barley.
Specimen part
View SamplesBarley cv. Morex inoculated with Fusarium graminearum (isolate Butte 86) or water (mock). Sampled at 24, 48, 72, 96 and 144 hours after treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Jayanand Boddu. The equivalent experiment is BB9 at PLEXdb.]
Transcriptome analysis of the barley-Fusarium graminearum interaction.
Specimen part, Time
View SamplesBarley florets (cv. Morex) were treated with 2.0 microgram deoxynivalenol per floret via a 10 microliter solution or mock inoculated with water. Samples were collected at 1, 12, 24, and 48 hours after inoculation. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Stephanie A. Gardiner. The equivalent experiment is BB62 at PLEXdb.]
Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification.
Specimen part, Treatment, Time
View SamplesAging is a key factor in Alzheimer''s disease, but it''s correlation with the pathology and pathological factors like amyloid-beta remains unclear In our study we aimed to provide an extensive characterisation of age-related changes in the gene expression profile of APP23 mice and controls and correlate these changes to pathological and symptomatic features of the model We found a clear biphasic expression profile with a developmental and aging phase. The second phase, particularly, displays aging features and similarties with the progression of Alzheimer pathology in human patients Processes involved in microglial activation, lysosomal processing, neuronal differantion and cytoskeletal regulation appear key factors in this stage. Interestingly, the changes in the gene expression profile of APP23 mice also seem to occur in control animals, but at a later age. The changes appear accelerated and/or exacerbated in APP23 mice. Overall design: mRNA profiles of APP23 mice and wild-type control littermates aged 1.5, 6, 18 or 24 months. For all the age groups, samples of 3 mice of each genotype were analyzed
Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease.
Age, Specimen part, Subject
View SamplesPurpose: Identify zebrafish microglia transcriptome in the healthy and neurodegenerative brain. Methods: RNA sequencing was performed on FACS-sorted microglia (3x), other brain cells (3x) and activated microglia (4x). Microglia activation was induced using nitroreductase-mediated cell ablation. 10-20 million reads per sample were obtained. Reads were mapped to zebrafish genome GRC10. Results: We identified the zebrafish microglia transcriptome, which shows overlap with previously identified mouse microglia transcriptomes. Transcriptomes obtained 24h and 48h after treatment appeared highly similar. Therefore, these datasets were pooled. Additionally, we identified an acute proliferative response of microglia to induced neuronal cell death. Overall design: Zebrafish microglia transcriptomes of homeostatic microglia (triplicate), other brain cells (triplicate), activated microglia 24h (duplo), activated microglia 48h (duplo). In data analysis all activated microglia samples were pooled.
Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish.
No sample metadata fields
View SamplesUnder microscope, MH-S cells show a heterogenous population. By clonal dilution, we generated single cell colonies and found that a set of clones that secreted higher the IL-4Ra regulating protein (“High IL-4Ra activity clones”) and set of colonies secreted lower amount (“Low IL-4Ra activity clones”).
IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints.
Specimen part, Cell line, Treatment
View Samples