A new Treg-specific, FoxP3-GFP-hCre BAC transgenic was crossed to a conditional Dicer knock-out mouse strain to analyze the role of microRNAs (miRNA) in the development and function of regulatory T cells (Tregs). Although thymic Tregs developed normally in this setting, the cells showed evidence of altered differentiation and dysfunction in the periphery. Dicer-deficient Treg lineage cells failed to remain stable as a subset of cells down-regulated the Treg-specific transcription factor, FoxP3, while the majority expressed altered levels of multiple genes and proteins (including Neuropilin 1, GITR and CTLA-4) associated with the Treg fingerprint. In fact, a significant percentage of the Treg lineage cells took on a Th memory phenotype including increased levels of CD127, IL-4, and interferon-g. Importantly, Dicer-deficient Tregs lost suppression activity in vivo; the mice rapidly developed fatal systemic autoimmune disease resembling the FoxP3 knockout phenotype. These results support a central role for miRNAs in maintaining the stability of differentiated Treg function in vivo and homeostasis of the adaptive immune system.
Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity.
No sample metadata fields
View SamplesFoxp3 is indispensable for Treg suppressive function, but the stability of Foxp3 has been controversial. In autoimmune arthritis, Th17 cells play a critically important pathological role, but the origin of Th17 cells remains unknown
Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response.
Specimen part, Treatment
View SamplesRegulatory T cells (Tregs) are essential for maintaining proper immune homeostasis. Extracellular signals (e.g. TCR, CD28, IL-2R) are necessary for the generation and maintenance of Tregs, but how these signals are integrated to control the gene expression patterns of Tregs is less clear. Here we show that the epigenetic regulator, Ezh2, was induced by CD28 costimulation and Ezh2 activity was elevated in Tregs as compared to conventional CD4+ T cells. Deletion of Ezh2 in mouse Tregs led to a progressive autoimmune disease because Tregs were compromised after activation, losing proper control of essential Treg lineage genes and adopting a gene expression pattern similar to Foxp3-deficient ‘Tregs.’ Lineage-tracing of Ezh2-deficient Tregs in vivo confirmed that the cells were destabilized selectively in activated Treg populations, which led to a significant loss of Tregs in non-lymphoid tissues. These studies reveal an essential role for Ezh2 in the maintenance of Treg “identity” during cellular activation and differentiation. Overall design: RNAseq of sorted populations of CD62Lhi or CD62Llo Tregs for both Ezh2-HET (Foxp3YFP-Cre/Foxp3WT;Ezh2fl/+ female mice) and Ezh2-KO (Foxp3YFP-Cre/Foxp3WT;Ezh2fl/fl female mice) were generated, in triplicate for each condition, using Illumina HiSeq 2500 single-end 50bp sequencing platform.
The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation.
No sample metadata fields
View SamplesWe used microarrays to detail the global gene transcription underlying T cells activation during the first 24 hours after stimulation.
CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response.
Specimen part, Treatment
View SamplesWe used microarrays to detail the global gene transcription effect of Dec1 underlying T cells activation during the first 24 hours after stimulation.
CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response.
Specimen part, Treatment
View SamplesMicroarray used to detail the global gene transcription underlying sorted IFNg+ and IFNg- Tregs (CD4+CD25+CD127lo) and Tconv (CD4+CD25-CD127+) for fresh (unexpanded) and 14 day expanded cells from human blood.
Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226.
Specimen part, Disease stage, Treatment, Subject
View SamplesWe transduced clonally MLL-AF9 leukemia cells expressing cas9 with sgRNA targeting the jumonji and zinc finger domains of JMJD1C. GFP (MLL-AF9) and TdTomato (sgRNA) double positive cells were sorted on Day 6 after transduction. Total RNA was isolated followed by mRNA selection. cDNA libraries were generated and NextGen Sequencing was performed. Overall design: We performed RNA-seq in mouse MLL-AF9 cas9 cells harboring sgRNA against jumonji and zinc finger domains of JMJD1C or renilla.
Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia.
Specimen part, Subject
View SamplesWe performed single-cell sequencing on mouse MLL-AF9-cas9 leukemia cells 7 days after transduction with sgRNA against Renilla or JMJD1C JmjC domain. We revealed heterogeneity within each population. Overall design: We performed single-cell sequencing on mouse MLL-AF9 cells harboring JMJD1C sgRNA targeting jumonji domain or renilla control sgRNA.
Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP).
Cell line
View Samples