Liver samples of mice harboring liver-specific deletion of Lats2 (Lats2-CKO) were compared to WT mice.
The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation.
Sex, Age, Specimen part
View SamplesmiR-92 enhances c-Myc induced apoptosis. In the R26MER/MER mouse embryonic fibroblasts (MEFs), a switchable variant of Myc, MycERT2, was knocked into the genomic region downstream of the constitutive Rosa26 promoter, allowing acute activation of c-Myc by 4-OHT-induced nuclear translocation. This in vitro system nicely recapitulates c-Myc-induced apoptosis, as activated MycERT2 induces strong p53-dependent apoptosis in response to serum starvation. Enforced miR-92 expression in three independent R26MER/MER MEF lines significantly enhanced Myc-induced apoptosis.
A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis.
Specimen part
View SamplesMetastasis depends on the ability of tumor cells to establish a relationship with the newly seeded host tissue that is conducive to their survival and proliferation. Recent evidence suggests that tumor cells regulate their own dissemination by preparing permissive metastatic niches within host tissues. However, the factors that are implicated in rendering tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display highly aggressive behaviour and early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. We show that during murine gestation, both the rate and degree of metastatic tumor growth are enhanced irrespective of tumor type and that decreased natural killer (NK) cell activity is responsible for the observed increase in experimental metastasis. We identify gene expression changes in pregnant mouse lung and liver that bear striking similarity with reported pre-metastatic niche signatures and several of the up-regulated genes are indicative of myeloid-cell infiltration. We provide evidence, that CD11b+ Gr-1+ myeloid-derived suppressor cells accumulate in pregnant mice and exert an inhibitory effect on NK cell activity, thereby enhancing metastatic tumor growth. MDSC have never been evoked in the context of pregnancy and our observations suggest that they may represent a further shared mechanism of immune suppression occurring during gestation and tumor growth.
Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation.
Specimen part
View SamplesMyeloid progenitors derived from antibiotic-treated mice have cell-intrinsic functional defects. In this microarray dataset, the transcriptomes of bone marrow myeloid progenitors from antibiotic-treated and control mice are compared.
Microbiota-dependent signals are required to sustain TLR-mediated immune responses.
No sample metadata fields
View SamplesOverexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
EZH2 is essential for glioblastoma cancer stem cell maintenance.
Specimen part, Treatment
View SamplesUsing single-cell RNA-seq of intestinal epithelial cells we identify surprising expression of MHC class II, which participates in a novel interaction between gut-resident CD4+ T cells and epithelial stem cells, governing the balance between stem cell differentiation and renewal. Overall design: In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesAirways conduct gases to the lung and are disease sites of asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells by proximodistal location; a distinct cell type in high turnover squamous epithelial structures that we term ''hillocks''; and disease-relevant subsets of tuft and goblet cells. We developed ''pulse-seq'' , combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that characterize cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease. Overall design: To understand normal tissue homeostasis, untreated cells were profiled using both 3''-droplet-based and full length plate-based single-cell RNAseq, in combination with genetic reporter-based lineage tracing.
A revised airway epithelial hierarchy includes CFTR-expressing ionocytes.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesWe identified a novel homozygous 15q13.3 microdeletion in a young boy with a complex neurodevelopmental disorder characterized by severe cerebral visual impairment with additional signs of congenital stationary night blindness (CSNB), congenital hypotonia with areflexia, profound intellectual disability, and refractory epilepsy. The mechanisms by which the genes in the deleted region exert their effect are unclear. In this paper we probed the role of downstream effects of the deletions as a contributing mechanism to the molecular basis of the observed phenotype. We analyzed gene expression of lymphoblastoid cells derived from peripheral blood of the proband and his relatives to ascertain the relative effects of the homozygous and heterozygous deletions.
Genome-wide gene expression in a patient with 15q13.3 homozygous microdeletion syndrome.
Cell line
View SamplesBackground: Previous studies comparing quantitative proteomics and microarray data have generally found poor correspondence between the two. We hypothesised that this might in part be because the different assays were targeting different parts of the expressed genome and might therefore be subjected to confounding effects from processes such as alternative splicing. Results: Using a genome database as a platform for integration, we combined quantitative protein mass spectrometry with Affymetrix Exon array data at the level of individual exons. We found significantly higher degrees of correlation than have been previously observed (r=0.808). The study was performed using cell lines in equilibrium in order to reduce a major potential source of biological variation, thus allowing the analysis to focus on the data integration methods in order to establish their performance. Conclusion: We conclude that much of the variation observed when integrating microarray and proteomics data may occur as a consequence both of the data analysis and of the high granularity to which studies have until recently been limited. The approach opens up the possibility for the first time of considering combined microarray and proteomics datasets at the level of individual exons and isoforms, important given the high proportion of alternative splicing observed in the human genome.
Exon level integration of proteomics and microarray data.
Cell line
View SamplesStudies in model organisms suggest that aged cells can be functionally rejuvenated, but whether this concept applies to human skin is unclear. Here we apply deep sequencing of RNA 3'' ends ("3-seq") to discover the gene expression program associated with human photoaging and intrinsic skin aging (collectively termed "skin aging") and the impact of broadband light (BBL) treatment. We find that skin aging was associated with the significantly altered expression level of 2,265 coding and noncoding RNAs, of which 1,293 became "rejuvenated" after BBL treatment, i.e. more similar in expression level of youthful skin. Rejuvenated genes (RGs) included several known key regulators of organismal longevity and their proximal long non-coding RNAs. Skin aging is not associated with systematic changes in 3'' end mRNA processing. Hence, BBL treatment can restore the gene expression pattern of photoaged and intrinsically aged human skin to resemble young skin. In addition, our data reveals a novel set of targets that may lead to new insights into the human skin aging process. Overall design: Examination of broadband light treated and untreated human skin transcriptomes of 5 women aged 50 years or more. They were compared to the skin transcriptomes of 5 young women aged 30 years or less.
Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study.
Sex, Specimen part, Treatment, Subject
View Samples