MDA231, BT549, and SUM159PT basal-like breast cancer cell lines were transfected with non-targeting siRNA (siCONTROL), siRNA targeting DUSP4 (siDUSP4), or siCONTROL + 4 or 24 hr of 1uM selumetinib. Cells were harvested at 96 hr post-siRNA transfection. Data were Log2 RMA normalized.
Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer.
Cell line, Compound
View SamplesIn acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease. Overall design: RNA-sequencing of human leukemia cell line with induction of wildtype or mutant MEF2C.
MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia.
Specimen part, Cell line, Treatment, Subject
View SamplesIn acute myeloid leukemia, chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that transgenic Mef2cS222A/S222A mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9. MEF2C phosphorylation was required for leukemia stem cell maintenance, induced by MARK kinases in cells, and blocked by selective MARK inhibitor MRT199665, which caused apoptosis of MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C. These findings identify signaling-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease. Overall design: RNA-sequencing of human leukemia cell line with treatment of MARK inhibitor MRT199665.
MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia.
Specimen part, Cell line, Treatment, Subject
View SamplesLung transplantation remains the only viable treatment option for the majority of patients with advanced lung diseases. However, 5-year post-transplant survival rates remain low primarily secondary to chronic rejection. Novel insights from global gene expression profiles may provide molecular phenotypes and therapeutic targets to improve outcomes after lung transplantation. We compared whole-genome transcriptional expression profiled using the Affymetrix Human Exon Array in peripheral blood mononuclear cells (PBMCs) in lung transplant patients and normal individuals. 364 dysregulated genes in Caucasian lung transplant patients relative to normal individuals. Enriched Gene Ontology biological processes and pathways included defense response, immune response and response to wounding. We then compared the expression profiles of potential regulating miRNAs which suggested that dysregulation of a number of lung transplant-associated genes (e.g., ATR, FUT8, LRRC8B, NFKBIA) may be attributed to the differential expression of their regulating miRNAs. This exploratory analysis of the relationship between these miRNAs and their gene targets in the context of lung transplantation warrants further investigation and may serve as novel therapeutic targets in lung transplant complications.
MicroRNAs Implicated in Dysregulation of Gene Expression Following Human Lung Transplantation.
Sex, Specimen part, Treatment, Race
View SamplesTranscriptome analysis of growth hormone dependant genes in glomerular podocytes
Growth hormone (GH)-dependent expression of a natural antisense transcript induces zinc finger E-box-binding homeobox 2 (ZEB2) in the glomerular podocyte: a novel action of gh with implications for the pathogenesis of diabetic nephropathy.
Specimen part, Treatment
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LL) and are often thought to represent a spectrum of a single disease. The malignant cells in T-ALL and T-LL are morphologically indistinguishable, and they share the expression of common cell surface antigens and cytogenetic characteristics. However, despite these similarities, differences in the predominant sites of disease in T-ALL and T-LL are observed. To determine if underlying biological distinctions may potentially contribute to some of these differences, we analyzed the global gene expression profiles of malignant T-cell precursors in ten T-ALL and nine T-LL using DNA arrays. Ten additional B-precursor ALL bone marrow samples, were used in a separate analysis.
Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No sample metadata fields
View SamplesCommitted preadipocyte fibroblasts were genetically labelled in transgenic mice by expressing GFP under the control of the locus for Zfp423, a gene controlling preadipocyte determination. These mice are herein referred to as Zfp423-GFP mice. The overall goal was to identify genes differentially expressed between adipogenic GFP+ firboblasts and non-adipogenic GFP- fibroblasts from either inguinal or epididymal fat stromal vascular cultures obtained from Zfp423-GFP mice.
Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.
No sample metadata fields
View Samples35 paired samples from initial diagnosis and first marrow relapse. Genes and pathways differentiating diagnosis and relapse were identified. Potential therapeutic targets were also identified.
Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies.
Specimen part, Disease
View Samples