The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the ß-blocker atenolol (ATE) and the ß-agonist isoproterenol (ISO). Differential expression analyses revealed a large set of genes responding to ISO (n=1770 at FDR=0.0001) and a comparatively small one responding to ATE (n=23 at FDR=0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r= -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibited coherent transcription profiles across some strains and/or treatments. Correlations between such modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Our study provides new insights into the transcriptional response of the heart to perturbations of the ß-adrenergic system, implicating several new genes that had not been associated to this system previously. Overall design: Cardiac mRNA expression profiles of the various inbred mouse strains were examined either under baseline condition (control) or in response to chronic administration of isoproterenol or atenolol at 10 mg/kg per day for 2 weeks. Expression data were produced by RNA-sequencing, in triplicates, using the HiSeq 2000 Illumina platform. Only males, aged ten to twelve weeks on average, were included in the experimental protocol. Mouse ID numbers refer to those described in Berthonneche C. et al. PLoS One. 2009 Aug 12;4(8):e6610 (doi: 10.1371/journal.pone.0006610. PMID: 19672458). Corresponding individual phenotypic values, in particular heart rate, systolic blood pressure, electrocardiogaphic measurements and heart weight are available in dataset "maurer1" of the Mouse Phenome Database (http://phenome.jax.org/). Preparation of the sequencing libraries, RNA-sequencing and RNA expression quantitations were performed by the BGI.
RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response.
Sex, Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 4 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
No sample metadata fields
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 3 biological replicates per condition
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part, Cell line, Subject
View SamplesFor placental mammals, the transition from the in utero maternal environment to postnatal life requires the activation of thermogenesis to maintain their core temperature. This is primarily accomplished by induction of uncoupling protein 1 (UCP1) in brown and beige adipocytes, the principal sites for uncoupled respiration. Despite its importance, how placental mammals license their thermogenic adipocytes to participate in postnatal uncoupled respiration is not known. Here, we provide evidence that the 'alarmin' IL-33, a nuclear cytokine that activates type 2 immune responses, licenses brown and beige adipocytes for uncoupled respiration. We find that, in absence of IL-33 or ST2, beige and brown adipocytes develop normally but fail to express an appropriately spliced form of Ucp1 mRNA, resulting in absence of UCP1 protein, and impairment in uncoupled respiration and thermoregulation. Together, these data suggest that IL-33 and ST2 function as a developmental switch to license thermogenesis during the perinatal period. Overall design: mRNA profiles of brown adipose tissues and inguinal white adipose tissues from postnatal day 0.5 and 24, respectively, WT and IL-33 knockout mice.
Perinatal Licensing of Thermogenesis by IL-33 and ST2.
Specimen part, Subject
View SamplesCutaneous lupus erythematosus (CLE) is a disfiguring disease that can exist as an independent entity or as a manifestation of systemic lupus erythematosus (SLE) where up to 70% of patients experience lesions during their disease course. Subacute CLE (sCLE) is an inflammatory lesion with associated erythema in papulosquamous or annular formations. Typically, sCLE does not scar but depigmentation can occur. Importantly, sCLE is associated with a higher progression to SLE. Discoid lesions (DLE) are often circular and frequently lead to alopecia and scar formation. sCLE lesions have a higher propensity for photoprovocation and a more robust inflammatory infiltrate following ultraviolet (UV) B exposure. The pathogenic mechanisms which govern the differences between DLE and sCLE remain poorly defined, and this is reflected by the refractory nature of cutaneous lesions to usual lupus therapies. In this study, we evaluated the transcriptional profiles of 26 DLE and 23 sCLE biopsies and compared them to control skin and to each other in order to develop a comprehensive understanding of the similarities and differences between these two clinical subtypes.
Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon-Induced Up-Regulation of Interferon Regulatory Factor 1.
Specimen part, Disease, Disease stage
View SamplesEzh2 encodes the catalytic subunit of the polycomb repressive complex 2 epigenetic regulator. Its ablation in the adrenal cortex results in profound alterations of adrenal homeostasis.
Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex.
Sex, Age, Specimen part
View SamplesSystemic lupus erythematosus (SLE) is characterized by increased vascular risk due to premature atherosclerosis independent of traditional risk factors. We previously proposed that interferon- plays a crucial role in premature vascular damage in SLE. IFN- alters the balance between endothelial cell apoptosis and vascular repair mediated by endothelial progenitor cells (EPCs) and myeloid circulating angiogenic cells (CACs). Here we demonstrate that IFN- promotes an antiangiogenic signature in SLE and control EPCs/CACs, characterized by transcriptional repression of IL-1 and , IL-1 receptor 1 and vascular endothelial growth factor A (VEGF-A) and upregulation of IL-1 receptor antagonist (IL-1RN) and the decoy receptor IL1-R2. IL-1 promotes significant improvement in the functional capacity of lupus EPCs/CACs, therefore abrogating the deleterious effects of IFN-.
The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction.
Specimen part, Disease, Disease stage, Treatment
View Samples