An RNA-seq dataset obtained from neural fold-stage chicken (Gallus gallus, strain Special Black) embryos that were exposed to a pharmacologically-relevant alcohol concentration (52 mM for 90 min) or isotonic saline. The cranial headfolds were isolated 6 hours following the initial alcohol exposure. Following RNA isolation, cDNA synthesis, and quality assurance (20), paired-end reads (75 bp) were generated on an Illumina Genome Analyzer IIx (University of Wisconsin Biotechnology Center). Overall design: Paired end runs with 2 replicate ethanol exposed samples (pool of 23 individual neural folds) and 2 saline control samples (pool of 23 individual neural folds).
Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder.
Specimen part, Cell line, Subject
View SamplesCoinhibitory receptor blockade is a promising strategy to boost immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for improved understanding of checkpoint blockade, but the T cell-intrinsic signaling pathways and gene expression profiles engaged during treatment are not well defined, particularly for combination approaches. We utilized a murine model of CD8+ T cell tolerance to address these issues.
Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells.
Specimen part
View SamplesBackground: The vast majority of human genes (.70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. Methodology/Principal Findings: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. Conclusions/Significance: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatability gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF2 and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MGthymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse TranscriptionPolymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches
Identifying alternative hyper-splicing signatures in MG-thymoma by exon arrays.
Sex
View SamplesMultiple regulatory regions have the potential to regulate a single gene, yet how these elements combine to impact gene expression remains unclear. To uncover the combinatorial relationships between enhancers, we developed Enhancer-interference (Enhancer-i), a CRISPR interference-based approach that can prevent enhancer activation simultaneously at multiple regulatory regions. We applied Enhancer-i to promoter-distal estrogen receptor a binding sites (ERBS), which cluster around estradiol-responsive genes and therefore may collaborate to regulate gene expression. Targeting individual sites revealed predominant ERBS that are completely required for the transcriptional response, indicating a lack of redundancy. Simultaneous interference of different ERBS combinations identified supportive ERBS that contribute only when predominant sites are active. Using mathematical modeling, we find strong evidence for collaboration between predominant and supportive ERBS. Overall, our findings expose a complex functional hierarchy of enhancers, where multiple loci bound by the same transcription factor combine to fine tune the expression of target genes. Overall design: The effects of Enhancer interference (Enhancer-i) and control guide RNA treatment on the transcriptome before and after estrogen treatment, with 2 replicates per condition.
Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers.
Specimen part, Treatment, Subject
View SamplesNK cells develop in the bone marrow and complete their maturation in peripheral organs, but the molecular events controlling maturation are incompletely understood. Utilizing an NK cell-specific miR-15/16 deficient genetic model (15aKO), we identified a critical role for miR-15/16 family microRNAs in the normal maturation of NK cells in vivo, with a specific reduction in mature CD11b+CD27- NK cells in multiple tissues. The mechanism responsible was a block in differentiation, since accelerated NK cell death was not evident, and earlier intermediates of NK cell maturation were expanded. Further, we identified Myb as a direct target of miR-15/16 in NK cells, with Myb expression increased in immature 15aKO NK cells. Following adoptive transfer, immature 15aKO NK cells exhibited defective maturation, which was rescued by ectopic miR-15/16 expression or Myb knockdown. Moreover, Myb overexpression resulted in defective NK cell maturation. Thus, miR-15/16 regulation of Myb controls the normal NK cell maturation program.
MicroRNA-15/16 Antagonizes Myb To Control NK Cell Maturation.
Cell line
View SamplesNK cells develop in the bone marrow and complete their maturation in peripheral organs, but the molecular events controlling maturation are incompletely understood. Utilizing an NK cell-specific miR-15/16 deficient genetic model (15aKO), we identified a critical role for miR-15/16 family microRNAs in the normal maturation of NK cells in vivo, with a specific reduction in mature CD11b+CD27- NK cells in multiple tissues. The mechanism responsible was a block in differentiation, since accelerated NK cell death was not evident, and earlier intermediates of NK cell maturation were expanded. Further, we identified Myb as a direct target of miR-15/16 in NK cells, with Myb expression increased in immature 15aKO NK cells. Following adoptive transfer, immature 15aKO NK cells exhibited defective maturation, which was rescued by ectopic miR-15/16 expression or Myb knockdown. Moreover, Myb overexpression resulted in defective NK cell maturation. Thus, miR-15/16 regulation of Myb controls the normal NK cell maturation program.
MicroRNA-15/16 Antagonizes Myb To Control NK Cell Maturation.
Specimen part
View SamplesAcute lung rejection is a risk factor for chronic rejection, jeopardizing the long-term survival of lung transplant recipients. At present, acute rejection is diagnosed by transbronchial lung biopsies, which are invasive, expensive, and subject to significant sampling error. In this study, we sought to identify groups of genes whose collective expression in BAL cells best classifies acute rejection versus no-rejection. BAL samples were analyzed from 32 unique subjects whose concurrent histology showed acute rejection (n=14) or no rejection (n=18). Global BAL cell gene expression was measured using Affymetrix U133A microarrays. The nearest shrunken centroid method with 10-fold cross validation was used to define the classification model. 250 runs of the algorithm were performed to determine the range of misclassification error and the most influential genes in determining classifiers. The estimated overall misclassification rate was below 20%. Seven transcripts were present in every classifier and 52 transcripts were present in at least 70% of classifiers; these transcripts were notable for involvement with T-cell function, cytotoxic CD8 activity, and granulocyte degranulation. The proportions of both lymphocytes and neutrophils in BAL samples increased with increasing probability of acute rejection; this trend was more pronounced with neutrophils. We conclude that there is a prominent acute rejection-associated signature in BAL cells characterized by increased T-cell, CD8+ cytotoxic cell, and neutrophil gene expression; this is consistent with established mechanistic concepts of the acute rejection response.
Bronchoalveolar lavage cell gene expression in acute lung rejection: development of a diagnostic classifier.
No sample metadata fields
View SamplesBronchoalveolar lavage samples collected from lung transplant recipients. Numeric portion of sample name is an arbitrary patient ID and AxBx number indicates the perivascular (A) and bronchiolar (B) scores from biopsies collected on the same day as the BAL fluid was collected. Several patients have more than one sample in this series and can be determined by patient number followed by a lower case letter. Acute rejection state is determined by the combined A and B score - specifically, a combined AB score of 2 or greater is considered an acute rejection.
Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection.
No sample metadata fields
View SamplesEstrogen receptor alpha (ESR1) mutations have been identified in hormone therapy resistant breast cancer and primary endometrial cancer. Analyses in breast cancer suggests that mutant ESR1 exhibits estrogen independent activity. In endometrial cancer, ESR1 mutations are associated with worse outcomes and less obesity, however experimental investigation of these mutations has not been performed. Using a unique CRISPR/Cas9 strategy, we introduced the D538G mutation, a common endometrial cancer mutation that alters the ligand binding domain of ESR1, while epitope tagging the endogenous locus. We discovered estrogen-independent mutant ESR1 genomic binding that is significantly altered from wildtype ESR1. The D538G mutation impacted expression, including a large set of non-estrogen regulated genes, and chromatin accessibility, with most affected loci bound by mutant ESR1. Mutant ESR1 is unique from constitutive ESR1 activity as mutant-specific changes are not recapitulated with prolonged estrogen exposure. Overall, D538G mutant ESR1 confers estrogen-independent activity while causing additional regulatory changes in endometrial cancer cells that are distinct from breast cancer cells. Overall design: RNA-seq was used to study the effects of the D538G mutation on gene expression
Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer.
Cell line, Treatment, Subject, Time
View SamplesCRABP2 potently suppresses carcinoma cell growth, yet the mechanism(s) that underlie this activity remain incompletely understood. Two distinct functions are known for CRABP2: 1) the classical function of this protein is to directly deliver retinoic acid (RA) to the nuclear retinoic-acid receptorthereby activate gene expression, and 2) in the absence of RA, CRABP2 directly binds to the RNA-binding and stabilizing protein, HuR, and markedly strengthens its interactions with target mRNAs.
Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms.
Specimen part, Cell line
View Samples