We provide data showing alternative splicing regulation by Muscleblind proteins in MEFs. MEFs lacking functional Muscleblind (DKO MEFs) were stably reconstituted with Muscleblind proteins from Homo sapiens, Ciona intestinalis, Drosophila melanogaster, Caenorhabditis elegans or Trichoplax adhaerens and splicing regulation was explored using RNA-seq analysis followed by MISO (Mixture of Isoforms). Overall design: Alternative splicing was accessed using RNA-sequencing data from five DKO MEF lines reconstituted with different GFP-tagged Muscleblind homologs or GFP alone and compared to RNA-seq data from three WT MEF lines and three control DKO MEFs (no Muscleblind reconstitution). A total of 12 samples were used for high-throughput sequencing.
Conservation of context-dependent splicing activity in distant Muscleblind homologs.
Subject
View SamplesTristetraprolin (TTP) is an RNA-binding protein that post-transcriptionally suppresses gene expression by delivering mRNA cargo to processing bodies (P-bodies) where the mRNA is degraded. TTP functions as a tumor suppressor in a mouse model of B cell lymphoma, and in some human malignancies low TTP expression correlates with reduced survival. Here we report important prognostic and functional roles for TTP in human prostate cancer. First, gene expression analysis of prostate tumors revealed low TTP expression correlates with patients having high-risk Gleason scores and increased biochemical recurrence. Second, in prostate cancer cells with low levels of endogenous TTP, inducible TTP expression inhibits their growth and proliferation, as well as their clonogenic growth. Third, TTP functions as a tumor suppressor in prostate cancer, as forced TTP expression markedly impairs the tumorigenic potential of prostate cancer cells in a mouse xenograft model. Finally, pathway analysis of gene expression data suggested metabolism is altered by TTP expression in prostate tumor cells, and metabolic analyses revealed that such processes are impaired by TTP, including mitochondrial respiration. Collectively, these findings suggest that TTP is an important prognostic indicator for prostate cancer, and augmenting TTP function would effectively disable the metabolism and proliferation of aggressive prostate tumors. Overall design: PC-3 cells were infected with a pRetroX-Tet-On-Advanced retrovirus and selected for by G418 resistance. Then the G418-resistant cells were secondarily infected with either a pRetroX-Tight-pPGK-tdTomato or a pRetroX-Tight-TTP-pPGK-tdTomato retrovirus and selected for by the expression of tdTomato. G418-resistant, tdTomato-positive cells were used for experiments, in triplicate for each cell type. Cells were treated with 300 ng/ml doxycycline (Dox) for 4h prior to collection. Cells infected with pRetroX-Tight-pPGK-tdTomato were used as controls.
Tristetraprolin disables prostate cancer maintenance by impairing proliferation and metabolic function.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View SamplesIntra-tumor heterogeneity is a hallmark of glioblastoma multiforme, and thought to negatively affect treatment efficacy. Here we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability between clones, including a wide range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-to-mesenchymal shift in the transcriptome.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesHypothesis: Non-small cell lung cancer (NSCLC) is characterized by a multitude of genetic aberrations with unknown clinical impact. In this study, we aimed to identify gene copy number changes that correlate with clinical outcome in NSCLC. To maximize the chance to identify clinically relevant events, we applied a strategy involving two prognostically extreme patient groups.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesBackground: Global gene expression profiling has been widely used in lung cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis and therapy response. So far, the value of these multi-gene signatures in clinical practice is unclear and the biological importance of individual genes is difficult to assess as the published signatures virtually do not overlap.
Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation.
Sex, Age
View SamplesThe delicate interaction between cancer cells and the surrounding stroma plays an essential role in all stages of tumourigenesis. Despite the significance of this interplay, alterations in protein composition underlying tumour-stroma interactions are largely unknown. The aim of this study was to identify stromal proteins with clinical relevance in non-small cell lung cancer.
CD99 is a novel prognostic stromal marker in non-small cell lung cancer.
Specimen part, Subject
View SamplesThe lncRNA LOC100130476 (named as WAKMAR2) was found to be down-regulated in epidermal keratinocytes in human chronic non-healing wounds compared to normal acute wounds and the intact skin. However, its biological role in keratinocytes during wound repair has not been studied.
WAKMAR2, a Long Noncoding RNA Downregulated in Human Chronic Wounds, Modulates Keratinocyte Motility and Production of Inflammatory Chemokines.
Specimen part
View SamplesTargets of Retinoic Acid (RA) and 3,4-didehydroretinoic acid (ddRA) were identified in primary human epidermal keratinocytes grown in the presence of atRA or ddRA for 4 and 24 hours.
The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.
Treatment
View Samples