Carcinoma development in colorectal cancer (CRC) is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of CRC metastatic disease, but how RAS-ERK signaling regulates CRC metastasis is still unknown.
ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer.
Cell line, Treatment
View SamplesFor this study we selected a gene, -synuclein (SNCA), that is consistently under-expressed in MCF7 cells and breast tumors. Following transfection with an SNCA expression construct, two stable MCF7 clones (named MCF7-SNCA #1 and 2) were selected and examined for expression differences relative to the parental MCF7 cells.
Cancer develops, progresses and responds to therapies through restricted perturbation of the protein-protein interaction network.
Specimen part, Cell line
View SamplesComparative RNA profiling between tumor cells and their secreted extracellular vesicles. Results revealed enrichment in genes involved in cellular migration and metastasis in extracellular vesicles, in agreement with their role as mediators of tumor progression.
In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.
Cell line
View SamplesThe mRNA processing body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1/LMKB is an RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. To investigate the function of LMKB in a human B lymphocyte cell line, BJAB cells were treated with either control lentivirus or a lentivirus containing LMKB siRNA.
LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.
Specimen part, Cell line
View SamplesReactive oxygen species (ROS) are implicated in tumor transformation by modulating proteins involved in differentiation, proliferation and invasion. In order to identify genes that may support melanoma progression or regression after an antioxidant system (AOS) response, we developed and characterized a human melanoma cell model with different levels of ROS by stably overexpressing the antioxidant enzyme catalase in A375 amelanotic melanoma cells, and whole genome gene expression patterns were analyzed by microarrays.
Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated.
Specimen part, Cell line
View SamplesWe have used microarray technology to identify the transcriptional targets of Rho subfamily GTPases. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of biological functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are up-regulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc, and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells
Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases.
No sample metadata fields
View SamplesWe used microarrays to analyze the global expression patterns for 22 commercially available pancreatic cancer cell lines
Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.
Specimen part, Cell line
View SamplesTo characterize the transcriptome of the transcription factor AP4 DLD-1 cells were infected with AP4 coding viruses for different periods of time. Adenovirus amplification and purification was performed as previously described (He et al., 1998). The minimal amount of virus needed to reach more than 90% infection efficiency was determined by monitoring GFP signals with fluorescence microscopy. DLD-1 cells were infected in serum-free medium with adenovirus for 3 hours. After removal an equal amount of medium containing 20% FBS was added.
AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer.
Cell line, Time
View SamplesGoal of this experiment is the identify differentially expressed genes in GBM zenografts that have been exposed to Cilengitide for 1 or 8 hours. A control with no cilengitide is also included. None of the tumors recieved radiation.
Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency.
No sample metadata fields
View SamplesTGF-beta treatment of Panc-1 pancreatic adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments.
Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems.
Specimen part, Cell line, Treatment
View Samples