We examined gene expression of LAPC4 cells after knocking down -TrCP, androgen ablation, or the combined treatments compared to non treated cells.
beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.
Cell line
View SamplesWe isolated and selected intestinal adenoma organoids from villin-CreER; Apcflox/flox and villin-CreER; Apcflox/flox; Prox1flox/flox mice and added tamoxifen to induce the deletion of the Apc and Prox1 genes in the intestinal epitheliul ex vivo. Microarray experiments were carried out 7 days after the addition of tamoxifen.
Prox1 promotes expansion of the colorectal cancer stem cell population to fuel tumor growth and ischemia resistance.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β.
Specimen part, Treatment
View SamplesIntestinal crypts isolated from Apcflox/flox; villin-CreERT mice were treated with Tamoxifen to induce the deletion of Apc. Tamoxifen-treated organoids were selected in the absence of Wnt agonists and then treated with TGF-beta.
Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β.
Specimen part, Treatment
View SamplesWe identified recurrent NOTCH1 mutations in 12% of MCLs. 2 out of 10 tested MCL cell lines (Rec-1 and SP-49) were sensitive to inhibition of the NOTCH pathway by gamma-secretase inhibition.
Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma.
Specimen part, Cell line
View SamplesWe applied a novel approach of parallel transcriptional analysis of multiple, highly fractionated stem and progenitor populations in a genetically defined subset of AML (AML with monosomy 7). We isolated phenotypic long-term HSC (LT-HSC), short-term HSC (ST-HSC), and committed granulocyte-monocyte progenitors (GMP) from individual patients with AML, and measured gene expression profiles of each population, and in comparison to their phenotypic counterparts from age-matched healthy controls.
Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS.
Age, Specimen part
View SamplesWe applied a novel approach of parallel transcriptional analysis of multiple, highly fractionated stem and progenitor populations from patients with acute myeloid leukemia (AML) and a normal karyotype. We isolated phenotypic long-term HSC (LT-HSC), short-term HSC (ST-HSC), and committed granulocyte-monocyte progenitors (GMP) from individual patients, and measured gene expression profiles of each population, and in comparison to their phenotypic counterparts from age-matched healthy controls.
Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS.
Age, Specimen part
View SamplesGene expression analysis on purified human long-term hematopoietic stem cells (LT-HSC; CD34+CD38-CD90+) and short-term HSC (ST-HSC; CD34+CD38-CD90-) derived from healthy control patients and patients with myelodysplastic syndrome (MDS)
Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations.
Specimen part, Disease, Disease stage
View SamplesGene expression data for shRNA PTPN1 knockdown vs. Non-silencing in the classical Hodgkin lymphoma-derived cell line KM-H2
Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma.
Specimen part, Cell line
View SamplesA-to-I RNA editing is a conserved and widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions. Although human RNAs contain millions of A-to-I editing sites, most of these occur in noncoding regions and their function is unknown. Knockdown of ADAR enzymes in C. elegans causes defects in normal development but is not lethal as it is in human and mouse, making C. elegans an ideal organism for studying the regulatory effects of RNA editing on the transcriptome. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, with the observation that lack of both mechanisms can suppress defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled to identify thousands of RNA editing sites in non-repetitive regions in the genome. These include dozens genes that are edited at their 3’UTR region. We found that these genes are mainly germline and neuronal genes and that they are downregulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner. In addition, we found that many pseudogenes and other lncRNAs are also extensively downregulated in the absence of ADARs in embryo but not L4 larva developmental stage, while this downregulation is not observed in additional knockout of RNAi. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. Overall design: RNA-seq samples were generated from: 1. wildtype (N2) at embryo stage 2. wildtype (N2) at L4 stage 3. ADAR mutant (BB21 or BB4) worms at L4 stage 4. ADAR mutant (BB21 or BB4) worms at embryo stage 5. ADAR mutant and RNAi mutant (BB23, BB24) at embryo stage RNA in high and low molecular weight fractions was extracted by mirVana kit (ambion). mRNA was sequenced from the high molecular weight fraction by means of Illumina TruSeq® RNA Sample Preparation kit automated by Agilent Bravo Automated Liquid Handling Platform. The resulting libraries were sequences with an Illumina HiSeq 2500.
A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.
Specimen part, Cell line, Subject
View Samples