refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 423 results
Sort by

Filters

Technology

Platform

accession-icon GSE50948
Expression Data from transNOAH breast cancer trial
  • organism-icon Homo sapiens
  • sample-icon 150 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

These data can be used for evaluation of the clinical utility of the research-based PAM50 subtype predictor in predicting pathological complete response (pCR) and event-free survival (EFS) in women enrolled in the NeOAdjuvant Herceptin (NOAH) trial.

Publication Title

Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study.

Sample Metadata Fields

Age, Treatment, Race

View Samples
accession-icon GSE25675
Identification and functional analysis of novel genes expressed in the Anterior Visceral Endoderm
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

During early development, the correct establishment of the body axes is a critical step. The anterior pole of the mouse embryo is established when Distal Visceral Endoderm (DVE) cells migrate to form the Anterior Visceral Endoderm (AVE). Asymmetrical expression of Lefty1, Cerl and Dkk determines the direction of DVE migration and the future anterior side. Besides being implicated in the establishment of Anterior-Posterior axis the AVE has also been correlated with anterior neural specification. In order to better understand the role of the AVE in these processes, this cell population was isolated using a cerlP-EGFP transgenic mouse line, and a differential screening was performed using Affymetrix GeneChip technology. From this differential screening, 175 genes were found to be upregulated in the AVE, whereas 35 genes were upregulated in the Proximal-posterior sample. Using DAVID, here we characterize the AVE cell population regarding cellular component, molecular function and biological processes. Among the genes that were found to be upregulated in the AVE, several novel genes with expression in the AVE were identified. Four of the identified transcripts displaying high-fold change were further characterized by in situ hybridization in early stages of development in order to validate the screening. From those four selected genes, ADTK1 was chosen to be functionally characterized by targeted inactivation in ES cells. ADTK1 encodes for an unknown serine/threonine kinase. ADTK null mutants present short limbs and defects in the eye and ear. Taken together, these data point to the importance of reporting novel genes present in the AVE.

Publication Title

Identification and functional analysis of novel genes expressed in the Anterior Visceral Endoderm.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67838
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67826
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination

Publication Title

Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP150673
FoxA1 and FoxA2 are required for gastric differentiation in NKX2-1-negative lung adenocarcinoma [single cell analysis]
  • organism-icon Mus musculus
  • sample-icon 134 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Profound changes in cancer cell identity can alter malignant potential and therapeutic response. Loss of the pulmonary lineage specifier NKX2-1 augments the growth of KRAS-driven lung adenocarcinoma and causes pulmonary to gastric transdifferentiation. Here we show that the transcription factors FoxA1 and FoxA2 are required for initiation of mucinous NKX2-1-negative lung adenocarcinomas in the mouse and for activation of their gastric differentiation program. Foxa1/2 deletion severely impairs tumor initiation and causes a proximal shift in cellular identity, yielding tumors expressing markers of the squamocolumnar junction of the gastrointestinal tract. In contrast, stochastic loss of FoxA1/2 expression in NKX2-1-negative tumors is associated with keratinizing squamous differentiation. Using sequential in vivo recombination, we find that FoxA1/2 loss in established KRAS-driven neoplasia is sufficient for direct induction of keratinizing squamous cell carcinomas in the lung. Thus, NKX2-1, FoxA1 and FoxA2 coordinately regulate the growth and identity of lung adenocarcinoma in a context-specific manner. Overall design: Murine lung tumor cells of differing genotypes were isolated by FACS and subjected to single cell analysis using the Fluidigm C1 platform.

Publication Title

FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE67904
Transcriptomic analyses of duodenum from wild type and VDR-null mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

As duodenum is an important Vitamin D target organ, transcriptomic analyses were performed in this tissue.

Publication Title

A vitamin D receptor selectively activated by gemini analogs reveals ligand dependent and independent effects.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP150672
FoxA1 and FoxA2 are required for gastric differentiation in NKX2-1-negative lung adenocarcinoma [total RNA-seq analysis]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Profound changes in cancer cell identity can alter malignant potential and therapeutic response. Loss of the pulmonary lineage specifier NKX2-1 augments the growth of KRAS-driven lung adenocarcinoma and causes pulmonary to gastric transdifferentiation. Here we show that the transcription factors FoxA1 and FoxA2 are required for initiation of mucinous NKX2-1-negative lung adenocarcinomas in the mouse and for activation of their gastric differentiation program. Foxa1/2 deletion severely impairs tumor initiation and causes a proximal shift in cellular identity, yielding tumors expressing markers of the squamocolumnar junction of the gastrointestinal tract. In contrast, stochastic loss of FoxA1/2 expression in NKX2-1-negative tumors is associated with keratinizing squamous differentiation. Using sequential in vivo recombination, we find that FoxA1/2 loss in established KRAS-driven neoplasia is sufficient for direct induction of keratinizing squamous cell carcinomas in the lung. Thus, NKX2-1, FoxA1 and FoxA2 coordinately regulate the growth and identity of lung adenocarcinoma in a context-specific manner. Overall design: Murine lung tumor cells of differing genotypes were isolated by FACS and subjected to total RNA-Seq.

Publication Title

FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE101114
Detailed Longitudinal Sampling of Glioma Stem Cells In Situ Reveals Chr7 Gain and Chr10 Loss As Repeated Events in Primary Tumor Formation and Recurrence
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE101113
Detailed Longitudinal Sampling of Glioma Stem Cells In Situ Reveals Chr7 Gain and Chr10 Loss As Repeated Events in Primary Tumor Formation and Recurrence (expression)
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we developed an extensive dataset for a GBM case via the generation of polyclonal and monoclonal glioma stem cell lines from initial diagnosis, as well as from multiple sections of distant tumor locations of the deceased patients brain following tumor recurrence. Our analyses revealed the tissue-wide expansion of a new clone in the recurrent tumor as well as chromosome 7 gain and chromosome 10 loss as repeated genomic events in primary and recurrent disease. Moreover, chromosome 7 gain and chromosome 10 loss produced similar alterations in mRNA expression profiles in primary and recurrent tumors despite possessing other highly heterogeneous and divergent genomic alterations between the tumors. We identified ETV1 and CDK6 as putative candidate genes, and NFKB (complex), IL1B, IL6, Akt and VEGF as potential signaling regulators, as potentially central downstream effectors of chr7 gain and chr10 loss. Finally, the differences caused by the transcriptomic shift following gain of chromosome 7 and loss of chromosome 10 were consistent with those generally seen in GBM samples compared to normal brain in large-scale patient-tumor data sets.

Publication Title

Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE53717
Identification of Molecular Pathways Facilitating Glioma Cell Invasion In Situ
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion.

Publication Title

Identification of molecular pathways facilitating glioma cell invasion in situ.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact