The goal of this study is to simultaneously interrogate host and parasite gene expression programs in human macrophages infected with the intracellular parasites from the genus Leishmania. We conducted high-resolution sequencing of the transcriptomes of human macrophages infected with Leishmania spp. using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes at various time points post-infection, enabling us to identify co-expression patterns that correlate with the biology of the parasite and to obtain a preliminary analysis of the dynamic nature of parasite and host cell gene expression programs in the context of infection. This study provides a solid framework for future functional and genomic studies of leishmaniasis as well as intracellular pathogenesis in general.
Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.
No sample metadata fields
View SamplesA greater understanding of the molecular pathways that underpin the unique human hematopoietic stem and progenitor cell (HSPC) self-renewal program will improve strategies to expand these critical cell types for regenerative therapies. The post-transcriptional mechanisms guiding HSPC fate during ex vivo expansion have not been closely investigated. Using shRNA-mediated knockdown, we show that the RNA-binding protein (RBP) Musashi-2 (MSI2) is required for human HSPC self-renewal. Conversely, when overexpressed, MSI2 induces multiple pro-self-renewal phenotypes, including significant ex vivo expansion of short- and long-term repopulating cells through direct attenuation of aryl hydrocarbon receptor (AHR) signaling. Using a global analysis of MSI2-RNA interactions, we determined that MSI2 post-transcriptionally downregulates canonical AHR pathway components in cord blood HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that underlie the self-renewal process and provides evidence that manipulating such networks can provide a novel means to enhance the regenerative potential of human HSPCs expanded ex vivo. Overall design: 4 samples were used for RNA-seq (4 biological duplicate) including 2 sets of control samples (irrelvant shRNA kncok-downs)
Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells.
No sample metadata fields
View SamplesThe goal of this study is to simultaneously interrogate the gene expression programs in human host cells (human foreskin fibroblasts) infected with the intracellular parasite Trypanosoma cruzi. We conducted high-resolution sequencing of the transcriptomes of T. cruzi and infected human foreskin fibroblasts (HFFs) using an RNA-seq approach. An array of computational tools was applied to map reads to the T. cruzi and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for T. cruzi genes at at various time points post-infection enabling us to identify co-expression patterns that correlate with the biology of the parasite. We also conducted a time course of infection in host cells to obtain a preliminary analysis of the dynamic nature of parasite and host cell gene expression programs in the context of infection. These data provide the first glimpse of T. cruzi gene expression programs that are uniquely activated in the context of intracellular infection along with the transcriptional response of the human host cell. The study provides a solid framework for future functional and genomic studies of Chagas disease as well as intracellular pathogenesis in general.
Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTreatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesBackground: Renal cell carcinoma (RCC) is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach.
Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesThis study examines the mechanisms underlying fumarate- and glyoxylate-mediated changes in tobraymcyin sensitivity in PAO1 cells
Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control.
No sample metadata fields
View SamplesER71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for ER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an ER71-EYFP transgenic mouse model by fusing the 3.9 kb ER71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the EYFP+ populations of cells in ER71 mutant and wildtype littermates. In the absence of ER71, we observed an increase in the number of EYFP expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-endothelial program compared to the wildtype littermate controls. We have also generated a novel ER71-Cre transgenic mouse model using the same 3.9 kb ER71 promoter. Genetic fate mapping studies revealed that the ER71 expressing cells daughter hematopoietic and endothelial lineages in the wildtype background. In the absence of ER71, these cell populations contributed to alternative mesodermal lineages including the cardiac lineage. To extend these analyses, we used an inducible ES/EB system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER71 as a critical regulator of mesodermal fate decisions, acting to specify the hematopoietic and endothelial lineages at the expense of cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during embryogenesis.
ER71 directs mesodermal fate decisions during embryogenesis.
Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression after knockdown of Ecdysoneless in hMECs
The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.
Specimen part, Cell line
View SamplesSenescent cells affect many physiological and pathophysiological processes. While select genetic and epigenetic elements for senescence induction have been identified, the dynamics, epigenetic mechanisms and regulatory networks defining senescence competence, induction and maintenance remain poorly understood, precluding the deliberate therapeutic targeting of senescence for health benefits. Here, we examined the possibility that the epigenetic state of enhancers determines senescent cell fate. We explored this by generating time-resolved transcriptomes and epigenome profiles during oncogenic RAS-induced senescence and validating central findings in different cell biology and disease models of senescence. Through integrative analysis and functional validation, we reveal links between enhancer chromatin, transcription factor recruitment and senescence competence. We demonstrate that activator protein 1 (AP-1) ‘pioneers’ the senescence enhancer landscape and defines the organizational principles of the transcription factor network that drives the transcriptional programme of senescent cells. Together, our findings enabled us to manipulate the senescence phenotype with potential therapeutic implications.
AP-1 imprints a reversible transcriptional programme of senescent cells.
Specimen part, Cell line, Treatment, Time
View Samples