Mammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5'-end m7G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo.
Hypermethylated-capped selenoprotein mRNAs in mammals.
Cell line
View SamplesMouse embryonic fibroblasts (MEFs) were generated from 13.5-day-old embryos obtained from heterozygous PKBa mice intercrosses (Yang et al., 2003). Briefly, after dissection of head and visceral organs for genotyping, embryos were minced and trypsinized for 30 min at 37C. Embryonic fibroblasts were then plated and maintained in Dulbeccos Modified Eagle Medium (DMEM) with 10% foetal calf serum (FCS) (Life Technologies), 100 units/ml of penicillin and 100 mg/ml of streptomycin at 37C in an atmosphere of 5% CO2. All experiments were performed with wild-type and PKBa-/- MEFs between 15-20 passages. To induce adipocyte differentiation, 2-day-postconfluent cells (day 0) were treated with DMEM supplemented with 10% FCS, 8 mg/ml biotin, 4 mg/ml pantothenate, 0.5 mM 3-isobutyl-1-methylxanthine, 1 mM dexamethasone and 10 mg/ml insulin (all from Sigma). Total RNA was extracted from cells using TRIzol (Invitrogen) according to the manufacturers instructions.
PKBalpha is required for adipose differentiation of mouse embryonic fibroblasts.
No sample metadata fields
View SamplesSUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via carboxy-terminal SUN-KASH domains to form the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes sustain numerous biological processes by connecting chromatin with the cytoplasmic force generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled coil domain makes SUN-1 sensitive to unilateral force generation across the nuclear membrane. However, absence of this domain does not lead to different expression levels of sun-1 and other known meiotic genes in the mutant compared to wild type. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in their absence. Overall design: A total number five samples were analyzed including two independent wild-type replicates and three independent mutant replicates by PE 50bp RNASeq.
Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line.
Specimen part, Subject
View SamplesTo discover novel growth factors for hematopoietic stem- and progenitor cells (HSPCs), we have assessed cytokine responses of cord blood (CB)-derived CD34+ cells in a high-content growth factor screen. We identify the immunoregulatory chemokine (C-C motif) ligand 28 (CCL28) as a novel growth factor that directly stimulates proliferation of primitive hematopoietic cells from different ontogenetic origins.
Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells.
Specimen part
View SamplesHow genomic information is selectively utilized to direct spatial and temporal gene expression patterns during differentiation remains to be elucidated but it is clear that regulated changes in higher-order genomic architecture plays a fundamental role. Specifically, long range interactions within and between chromosomes and the position of chromosome territories in the nucleus are controlled by TADs and LADs respectively, but the relationship between these genomic organizers remains poorly understood Overall design: We analyzed the large-scale spatial reorganization of chromatin by generating matched Hi-C and nuclear lamin-chromatin contact datasets throughout a dual adipose/neuronal induction of human primary adipose stem cells. We have mapped Hi-C (TADs) and lamin-associated domains (LADs) in multiple steps during adipose stem cell differentiation to characterize the spatial and temporal link between genomic architecture and gene expression. We identify a new level of 4D genomic organization involving a long-range clustering of individual TADs or TAD pairs into TAD cliques. LADs appear to regulate their formation. (ASCs). We unveil a lineage-specific dynamic assembly and disassembly of repressive cliques of linearly non-contiguous TADs, and a time course-coupled relationship between TAD clique size and lamina association. Our findings reveal a new level of developmental genome organization and provide an overview of large-scale changes in the 4D nucleome during lineage-specific differentiation.
Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.
No sample metadata fields
View SamplesThere are an estimated 21million diabetics in the United States and 150 million diabetics worldwide. The World Health Organization anticipates that these numbers will double in the next 20 years. Metabolic syndrome is a well recognized set of symptoms that increases a patients risk of developing diabetes. Insulin resistance is a factor in both metabolic syndrome and Type 2 diabetes. It is characterized by decreased insulin stimulated glucose uptake in peripheral tissues, decreased adiponectin levels, increased adipocyte FFA and cytokine production, and increased insulin and hepatic glucose output. Prevention or reversal of insulin resistance should serve as an important strategy in addressing the growing health concerns posed by the Diabetes epidemic. While increased adiposity is associated with insulin resistance, the role of the cell types present within adipose (adipocytes, pre-adipocytes, endothelial cells, macrophages, fibroblasts, leukocytes and smooth muscle cells) in insulin resistance is unclear. In an effort to begin dissection of this question, we examined the transcriptional response of the buoyant and non-buoyant fractions isolated from insulin sensitive or TNF induced insulin resistant hMSC derived adipocytes before and after treatment with insulin.
Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes.
Specimen part
View SamplesBackground: Renal cell carcinoma (RCC) is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach.
Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesThe heart responds to pathological overload through myocyte hypertrophy. In our study, we found that this response is regulated by cardiac fibroblasts via a novel paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). PMCA4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out PMCA4 specifically in cardiomyocytes does not produce this effect. Mechanistically, our microarray data on fibroblasts isolated from PMCA4 WT and PMCA4 knockout animals showed that cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes.
The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy.
Sex, Age, Specimen part
View SamplesThe ability of oncogenes to provoke cancer is harnessed by regulators that control cell proliferation or induce apoptosis, and bypass of these checkpoints is a hallmark of malignancies. Myc oncoproteins are overexpressed in ~70% of all cancers and induce numerous transcription targets that regulate cell growth, metabolism, and the ribosome machinery. We used the E-Myc mouse model from which one can directly compare expression profiles of wild type versus Myc-expressing B220+ pre-malignant lymphocytes and also queried differences in gene expression that ensue following the neoplastic switch to lymphoma (Nilsson et al., 2005 - PMID:15894264 and Keller et al. 2010 - PMID:20598117).
Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
Specimen part
View SamplesThe lineage of the horizontal basal cells (HBC) stem cells and other Sox2eGFP-positive cells from the olfactory epithelium were profiled by single-cell RNA-Seq to identify differentiated cells types, intermediate stages, transition states, and to infer the lineage trajectories. Overall design: Horizontal basal cell (HBC) stem cells from the olfactory epithelium that were either wild-type or mutant for the transcription factor Trp63/p63 were lineage traced, collected by FACS, and profiled by single-cell RNA-seq. Additionally, Sox2eGFP transgenic cells from the olfactory epithelium were combined with this data into one data set that was processed together. A minimum of two biological replicates were collected for each time-point/experimental condition. A total of 680 YFP-positive lineage traced cells plus 169 Sox2eGFP-positive cells were used in this analysis.
Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution.
Subject
View Samples