Survival of insects on a substrate containing toxic substances such as plant secondary metabolites or insecticides is dependent on the metabolism or excretion of those xenobiotics. The primary sites of xenobiotic metabolism are the midgut, Malpighian tubules and fat body. In general, these organs are treated as single tissues by online databases, but several studies have shown that gene expression within subsections of the midgut is compartmentalized. In this article, RNA sequencing analysis was used to investigate whole-genome expression in subsections of the third-instar larval midgut. The results support functional diversification in subsections of the midgut. Analysis of the expression of gene families that are implicated in the metabolism of xenobiotics suggests that metabolism may not be uniform along the midgut. These data provide a starting point for investigating gene expression and xenobiotic metabolism in the larval midgut. Overall design: Examination of expression in eight samples corresponding to compartments of gene expression in the midgut
Whole-genome expression analysis in the third instar larval midgut of Drosophila melanogaster.
Specimen part, Cell line, Subject
View SamplesThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
Age, Specimen part, Treatment, Subject
View SamplesStem cell antigen-1 (Sca-1 or Ly6A) is a member of the Ly6 family of glycosyl phostidylinositol (GPI)-anchored cell surface proteins. To determine the potential mechanisms by which Sca-1 regulates cell migration, adhesion, and tumor development; we performed an Affymetrix mouse genome 430A 2.0 array on cDNA comparing shLuc and shSca-1 from cells grown in vitro.
Stem cell antigen-1 (sca-1) regulates mammary tumor development and cell migration.
Specimen part, Cell line
View SamplesNOD mice are an inbred strain that display enhanced MZ B cell differentiation from an early age. Interestingly, several lines of evidence implicate MZ B cells in this strain as important contributors to the T cell mediated beta cell destruction associated with the development of type 1 diabetes (T1D). In order to develop a better understanding of the underlying causes for augmented MZ B cell production in NOD mice, we obtained the transcriptional profiles of FO and MZ subsets and TR precursors from NOD mice and compared them to those of the B6 strain.
Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice.
Sex, Age, Specimen part
View SamplesWe examined differential expression of genes within 10MBs of telomeres in myoblasts with long or short telomeres
Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances.
Specimen part
View SamplesPulmonary exposure to multiwalled carbon nanotubes (MWCNT) induces an inflammatory and rapid fibrotic response, although the long-term signaling mechanisms are unknown. The aim of this study was to examine the effects of 1, 10, 40, or 80 g MWCNT administered by pharyngeal aspiration on bronchoalveolar lavage (BAL) fluid for polymorphonuclear cell (PMN) infiltration, lactate dehydrogenase (LDH) activity, and lung histopathology for inflammatory and fibrotic responses in mouse lungs 1 mo, 6 mo, and 1 yr postexposure. Further, a 120-g crocidolite asbestos group was incorporated as a positive control for comparative purposes. Results showed that MWCNT increased BAL fluid LDH activity and PMN infiltration in a dose-dependent manner at all three postexposure times. Asbestos exposure elevated LDH activity at all 3 postexposure times and PMN infiltration at 1 mo and 6 mo postexposure. Pathological changes in the lung, the presence of MWCNT or asbestos, and fibrosis were noted at 40 and 80 g MWCNT and in asbestos-exposed mice at 1 yr postexposure. To determine potential signaling pathways involved with MWCNT-associated pathological changes in comparison to asbestos, up- and down-regulated gene expression was determined in lung tissue at 1 yr postexposure. Exposure to MWCNT tended to favor those pathways involved in immune responses, specifically T-cell responses, whereas exposure to asbestos tended to favor pathways involved in oxygen species production, electron transport, and cancer. Data indicate that MWCNT are biopersistent in the lung and induce inflammatory and fibrotic pathological alterations similar to those of crocidolite asbestos, but may reach these endpoints by different mechanisms.
Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes.
Specimen part, Disease
View SamplesThe mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis.
Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes.
Specimen part, Disease
View SamplesMicrovesicles (MV) are small membrane-bound particles comprised of exosomes and various sized extracellular vesicles. These are released by a number of cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and whether they influenced the differentiation of nave monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including monocytes, endothelial cells, epithelial cells and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.
Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.
Specimen part, Treatment
View SamplesCxcr7-/- mice die a few hours after birth. All of them display semilunar valves abnormalities, including bicuspid aortic or pulmonary valves. Those defects only become obvious before birth.
Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7.
No sample metadata fields
View Samples