Gliogenesis in the Drosophila CNS occurs during embryogenesis and also during the postembryonic larval stages. Several glial subtypes are generated in the postembryonic CNS through the proliferation of differentiated glial cells. The genes and molecular pathways that regulate glial proliferation in the postembryonic CNS are poorly understood. In this study we aimed to use gene expressing profiling of CNS tissue enriched in glia to identify genes expressed in glial cells in the postembryonic CNS.
Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells.
Specimen part, Treatment
View SamplesSparstolonin B is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. SsnB has previously demonstrated anti-angiogenic properties. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner.
Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells.
Specimen part, Treatment
View SamplesSparstolonin B is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. SsnB has previously demonstrated anti-angiogenic properties. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner.
Sparstolonin B inhibits pro-angiogenic functions and blocks cell cycle progression in endothelial cells.
Specimen part, Treatment
View SamplesMitochondrial DNA (mtDNA) encodes essential components of the respiratory chain and loss of mtDNA leads to mitochondrial dysfunction and neurodegeneration. Mitochondrial transcription factor A (TFAM) is an essential component of mtDNA replication and a regulator of mitochondrial copy number in cells. Studies have shown that TFAM knockdown leads to mitochondrial dysfunction and respiratory chain deficiencies. ATP synthase is Complex V of the mitochondrial respiratory chain. It is driven by a proton gradient between the intermembrane space and the mitochondrial matrix and generates the majority of cellular ATP. The knockdown of coupling factor 6 (Cf6), one of the components of the proton channel F0, causes dysfunction in the complex, leading to mitochondrial dysfunction and respiratory chain deficiencies. Using gene expression analysis, we aimed to investigate the effects of mtDNA dysfunction in the CNS at the molecular level.
Mitochondrial retrograde signaling regulates neuronal function.
Specimen part
View SamplesMitochondrial dysfunction causes biophysical, metabolic and signalling changes that alter homeostasis and reprogram cells. We used a Drosophila model in which TFAM is overexpressed in the nervous system with or without Ras/MAPK pathway inhibition, by knock-down of the ETS transcription factor pointed, to investigate the how mitochondrial dysfunction and Ras/MAPK signalling affect the transcriptome.
Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling.
Specimen part
View SamplesSkeletal muscle adapts to exercise training of various modes, intensities and durations with a programmed gene expression response. This study dissects the independent and combined effects of exercise mode, intensity and duration to identify which exercise has the most positive effects on skeletal muscle health. Full details on exercise groups can be found in: Kraus et al Med Sci Sports Exerc. 2001 Oct;33(10):1774-84 and Bateman et al Am J Cardiol. 2011 Sep 15;108(6):838-44.
Metabolite signatures of exercise training in human skeletal muscle relate to mitochondrial remodelling and cardiometabolic fitness.
Sex, Age, Specimen part, Race, Subject
View SamplesSpaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts towards faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, microarray expression analysis was performed on gastrocnemius from mice flown on the STS-108 shuttle flight (11 days, 19 hours) versus mice maintained on earth for the same period. Additionally, to identify changes that were due to unloading and reloading, microarray analyses were conducted on calf muscle from ground-based mice subjected to hindlimb suspension (12 days) and mice subjected to hindlimb suspension plus a brief period of reloading (3.5 hours) to simulate the time between landing and sacrifice of the spaceflight mice.
Effects of spaceflight on murine skeletal muscle gene expression.
No sample metadata fields
View SamplesThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
Age, Specimen part, Treatment, Subject
View SamplesCerebellar development requires regulated proliferation of cerebellar granule neuron progenitors (CGNPs). Inadequate CGNP proliferation causes cerebellar hypoplasia while excessive CGNP proliferation can cause medulloblastoma, the most common malignant pediatric brain tumor. Although Sonic Hedgehog (SHH) signaling is known to activate CGNP proliferation, the mechanisms down-regulating proliferation are less defined. We investigated CGNP regulation by GSK-3, which down-regulates proliferation in the forebrain, gut and breast by suppressing mitogenic WNT signaling. In striking contrast, we found that co-deleting Gsk-3α and Gsk-3β blocked CGNP proliferation, causing severe cerebellar hypoplasia. Transcriptomic analysis showed activated WNT signaling and up-regulated Cdkn1a in Gsk-3-deleted CGNPs. These data show that a GSK-3/WNT axis modulates the developmental proliferation of CGNPs and the pathologic growth of SHH-driven medulloblastoma. The requirement for GSK-3 in SHH-driven proliferation suggests that GSK-3 may be targeted for SHH-driven medulloblastoma therapy.
GSK-3 modulates SHH-driven proliferation in postnatal cerebellar neurogenesis and medulloblastoma.
Specimen part
View Samples