Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using exon microarrays and RNAsequencing. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. In conclusion, In vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. Overall design: A total of eight independent RNAseq experiments were conducted. Four RNAseq experiments (n = 2 unstimulated, n = 2 stimulated with flagellin) were performed using AECs grown in monolayer. Four RNAseq experiments (n =2 unstimulated, n = 2 stimulated with flagellin) were conducted using AECs grown in ALI cultures
Plasticity of airway epithelial cell transcriptome in response to flagellin.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plasticity of airway epithelial cell transcriptome in response to flagellin.
Specimen part, Treatment
View SamplesAirway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using exon microarrays and RNAsequencing. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. In conclusion, In vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium.
Plasticity of airway epithelial cell transcriptome in response to flagellin.
Specimen part, Treatment
View SamplesTo identify the global gene expression changes driven by L-Myc during SCLC development, mRNA expression profiles were compared using total RNAs from preneoplastic precursors of SCLC and the cells transformed by overexpression of L-Myc.
Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer.
Specimen part
View SamplesWe identified PHF5A as a functional synthetic-lethal hit in glioblastoma stem cells compared to normal neural stem cells. We wanted to perform analysis of RNA isoforms present in glioblastoma or normal neural stem cells with or without PHF5A depletion. We performed shRNA knockdown of PHF5A or used non-silencing shRNA as a control, selected infected cells with puromycin, and isolated RNA for sequencing. Overall design: We analyzed RNA from either normal neural stem cells or two different glioblastoma specimens aster either control knockdown, or two different shRNA sequences against the PHF5A gene transcript.
Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A.
No sample metadata fields
View SamplesSox2 is required to maintain osteosarcoma cell tumor initiation.Knockdown of Sox2 leads tpo loss of tumorigenic properties. To examine gene expression changes upon Sox2 knockdown, we performed microarray analysis on mouse osteosarcoma cells expressing scrambled or Sox2shRNA. We found that genes upregulated upon Sox2 knockdown included osteoblast diffrentiation genes and genes down regulated included cell cycle and RNA processing genes as well as YAP-TEAD target genes.
Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells.
Specimen part, Cell line
View Samples17b-Estradiol added to MEL cells expressing Gata1-ER or PU.1-ER transgenes to stimulate either erythropoietic Gata-1 dependent or myeloid PU.1 dependent gene espression in different time points
PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation.
Disease, Disease stage
View SamplesThe Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is comprised of four proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and found that MED12 localizes to transcription factor consensus sequences within calcium handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes, and that MED12 and MEF2 co-occupy promoters of calcium handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and overexpression of both increases expression of calcium handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium handling genes, consequently “mediating” contractility in the mammalian heart. Overall design: Ventricle mRNA profiles of 1-day old control (CTL, CreNEG) and cardiac-specific Med12 knockout mice (Med12cKO, CrePOS) were generated by deep sequencing, in triplicate, using Illumina.
MED12 regulates a transcriptional network of calcium-handling genes in the heart.
No sample metadata fields
View SamplesAnaplastic large-cell lymphoma (ALCL) makes up approximately 15% of paediatric non-Hodgkin's lymphomas of childhood. The vast majority of them is associated with the t(2;5)(p23;q35) translocation that results in the expression of a hybrid oncogenic tyrosine kinase, NPM-ALK. In order to investigate ALCL biological characteristics we used transcriptional profiling approach. Genome-wide gene expression profiling, performed on 23 paediatric ALCL and 12 reactive lymph nodes specimens, showed two novel ALCL subgroups based on their NPM-ALK expression levels (named (ALK low and ALK high). Gene set enrichment analysis revealed, in ALK low samples, a positive enrichment of genes involved in the Interleukin signaling pathway, whereas we found increased expression of genes related to cell cycle progression and division in ALK high tumour samples, such as Aurora Kinase A (AURKA) and B (AURKB). Growth inhibition was observed upon administration of AURKA and AURKB inhibitors Alisertib and Barasertib and it was associated with perturbation of the cell cycle and induction of apoptosis. In conclusion we identified two novel ALCL subgroups, which display unique biological characteristics suggesting sensitivity to distinct targeted therapies.
NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma.
No sample metadata fields
View SamplesAcute lymphoblastic pediatric leukemia specimens without known genetic hallmarks are examined for hidden genomic aberrancies and related gene expression profiles
Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks.
No sample metadata fields
View Samples