This SuperSeries is composed of the SubSeries listed below.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment, Subject
View SamplesIn this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity. In this study, primary monocytes were differentiated into macrophages using M-CSF (M-Mac) or with a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in the macrophages, four of which were expressed higher in I-Mac (miRNAs 2.1, 8.1, 9.1 and 14.2) whilst three were detected in both M-Mac and I-Mac (miRNAs 9.3, 13.6 and 15.8). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment
View SamplesIn this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity. In this study, primary monocytes were differentiated into macrophages using M-CSF (M-Mac) or with a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in the macrophages, four of which were expressed higher in I-Mac (miRNAs 2.1, 8.1, 9.1 and 14.2) whilst three were detected in both M-Mac and I-Mac (miRNAs 9.3, 13.6 and 15.8). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs. Overall design: screening novel and known miRNAs which may have antiviral properties in 2 different treatments in 2 donors.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Subject
View SamplesPatients with metastatic colorectal cancer were enrolled for treatment with cetuximab monotherapy. Transcriptional profiling was conducted on RNA from pre-treatment metastatic site biopsies to identify genes whose expression correlates with best clinical responses.
Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab.
Specimen part
View SamplesHER2 is a tyrosine kinase receptor causally involved in cancer. A subgroup of breast cancer patients with particularly poor clinical outcome expresses a heterogeneous collection of HER2 carboxy-terminal fragments (CTFs). However, since the CTFs lack the extracellular domain that drives dimerization and subsequent activation of full-length HER2, they are in principle expected to be inactive. Here we present evidence that at low expression levels one of these fragments, 611-CTF, activated multiple signaling pathways because of its unanticipated ability to constitutively homodimerize. A transcriptomic analysis revealed that 611-CTF specifically controlled the expression of genes that we found correlated with poor prognosis in breast cancer. Among the 611-CTF-regulated genes were several that previously have been linked to metastasis, including MET, EPHA2, MMP1, IL11, ANGPTL4 and different Integrins. Transgenic mice overexpressing HER2 in the mammary gland develop tumors only after acquisition of activating mutations in the transgene. In contrast, we show that expression of 611-CTF led to development of aggressive and invasive mammary tumors without the need for mutations. These results demonstrate that 611-CTF is a potent oncogene capable of promoting mammary tumor progression and metastasis.
A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis.
Cell line, Time
View SamplesThese data can be used for evaluation of the clinical utility of the research-based PAM50 subtype predictor in predicting pathological complete response (pCR) and event-free survival (EFS) in women enrolled in the NeOAdjuvant Herceptin (NOAH) trial.
Research-based PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-positive breast cancer in the NOAH study.
Age, Treatment, Race
View SamplesAnalysis of MCF7 cells transfected with ER mutants (S463P, Y537S and D538G) in phenol-red free, charcoal stripped FBS media and regular DMEM/F12 media. Results provide insight on the gene expression profiles induced by the various ER mutants.
ESR1 ligand-binding domain mutations in hormone-resistant breast cancer.
Cell line
View SamplesA basal (MDAMB468) and luminal (ZR75-1) cell line were treated with DMSO or PKC412 for 6h Overall design: 2 DMSO and 3 PKC412 treated samples for each cell line
Targeting a cell state common to triple-negative breast cancers.
No sample metadata fields
View SamplesTGF-beta has an oncogenic response in glioblastoma and it is considered to be a therapeutic target. We evaluated the effect of TGF-beta inhibition in glioblastoma.
TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma.
Specimen part, Treatment
View SamplesPhosphoinositide-3-kinase (PI3K)-a inhibitors are clinically active in squamous carcinoma (SCC) of the head and neck (H&N) bearing mutations or amplification of PIK3CA. We aimed to identify potential mechanism of resistance and have observed that SCCs cells overcome the antitumor effects of the PI3Ka inhibitor BYL719 by maintaining PI3K-independent activation of the mammalian target of rapamycin (mTOR). The persistent mTOR activation is mediated by the tyrosine kinase receptor AXL. We found that AXL is overexpressed in resistant tumors, dimerizes with the epidermal growth factor receptor (EGFR), phosphorylates EGFR tyrosine 1173, resulting in activation of phospholipase C? (PLC?)- protein kinase C (PKC) that, in turn, activates mTOR. Finally, simultaneous treatment with PI3Ka and either EGFR, AXL or PKC inhibitors reverts this resistance. Overall design: RNAseq from acquired resistant cells CAL33B, K180B were compared to their parental counterpart CAL33 and K180, respectively. K180 is a shortcut of KYSE180, and B stands for BYL719. Duplicate of parental sensitive cells and K180B, and triplicate for CAL33B.
AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas.
No sample metadata fields
View Samples