To dissect the molecular mechanisms of PEA-15-mediated paclitaxel sensitization in ovarian cancer cells, we performed cDNA microarray analysis using SKOV3.ip1-S116A cells (Ser116 of PEA-15 substituted with alanine) and SKOV3.ip1-S116D cells (Ser116 of PEA-15 substituted with aspartic acid). cDNA microarray data analysis showed that SCLIP (SCG10-like protein), also known as STMN3, was highly expressed in SKOV3.ip1-S116D cells and was involved in pPEA-15-mediated paclitaxel sensitization in ovarian cancer cells.
Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP.
Specimen part, Cell line
View SamplesAberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF
Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.
Cell line, Subject
View SamplesEpidemiological data show that the immune system may control or promote emergence and growth of a neoplastic lymphomatous clone. Conversely, systemic lymphomas, especially myeloma and CLL, are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4+ cells, in patients with non-leukemic follicular and extranodal marginal zone lymphomas, but not in monoclonal gammopathy and early CLL. These numerical changes were correlated with a preactivated phenotype, hyperreactivity in vitro, presenescence, and a Th2 shift of peripheral T helper cells. No prominent alterations were found in the regulatory T cell compartment. Gene expression profiling of in vitro-stimulated CD4+ cells revealed an independent second alteration of T helper cell physiology which was most pronounced in early CLL but also detectable in FL/eMZL. This pattern consisted of downregulation of proximal and intermediate T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T cell dysfunction may contribute to significant immunodeficiency in non-leukemic indolent B-cell lymphomas as demonstrated by refractoriness to hepatitis B vaccination. The precise definition of systemic T cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation
Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL.
Specimen part, Disease, Disease stage
View SamplesLong-term treatment of Kasumi-1 cells at clinically attained doses of dasatinib led to decreased drug-sensitivity by means of IC50 values (relative to treatment-naive cells). Changes were paralled by profound alterations in c-KIT expression and cell signaling signatures. Upon brief discontinuation of dasatinib treatment, these alterations reversed and drug sensitivity was restored.
Transitory dasatinib-resistant states in KIT(mut) t(8;21) acute myeloid leukemia cells correlate with altered KIT expression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesKnockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in HCT116 cells.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CTNNB1 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression following CDK8 knockdown in HCT116 cells
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesKnockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in DLD1 cells.
H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesTgif1 is a transcriptional corepressor that limits TGF responsive gene expression. TGF signaling has antiproliferative effects in several cell types, generally resulting in a G1 arrest. Mouse embryo fibroblasts (MEFs) are primary cells with limited life-span, that senesce after several passages in culture.
Premature senescence and increased TGFβ signaling in the absence of Tgif1.
Specimen part
View Samples