Analyses of gene expression by RNA-Seq in mouse E14.5 fetal liver burst-forming unit erythroid (BFU-E) cells untreated or treated by dexamethasone (DEX) with or without PPARa agonist GW7647. Overall design: RNA-Seq was performed on enriched populations of mouse BFU-E isolated from E14.5 fetal liver, as well as BFU-E enriched cells treated with Dex ± GW7647.
PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
No sample metadata fields
View SamplesThe development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
Specimen part, Cell line, Subject
View Samplessingle cell RNA sequencing of freshly isolated mouse BFU-E (burst forming unit-erythroid ) cells cultured for 1, 2, or 3 days with and without 100nM dexamethasone Overall design: six 96 well plates
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Treatment, Subject
View SamplesSingle cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E) , colony forming unit-erythroid (CFU-E), and intermediate stages of erythroid development cells. Overall design: One 96 well plate with 24 BFU-E, 24 CFU-E, 24 cells with 25-35% expression of CD71/CD24, and 24 cells with 50-60% expression of CD71/CD24.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Subject
View SamplesSingle cell mouse BFU-E (burst forming unit-erythroid ) were FACS-deposited into individual wells of a 96-well plate containing PCM either with or without 100 nM dexamethasone. After 16hrs cells from wells that contained a single pair of daughter cells were separated and each individual daughter cell transcriptome was obtained by single cell RNA-seq. Overall design: 13 daughter cells pairs untreated and 13 pairs treated with 100 nM dexamethasone.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Treatment, Subject
View SamplesSingle cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E). Overall design: One 96 well plate with 24 BFU-E.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Subject
View SamplesThe hlh-30 gene encodes a C. elegans basic-helix-loop-helix (bHLH) transcription factor; We compared RNA from wild type worms and worms mutant for the hlh-30 gene to identify putative target genes of the HLH-30 transcription factor.
A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors.
Specimen part
View SamplesIn response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation. Using LNA silencing combined to microarray technology, we have identified the Toll-like receptor / interleukin-1 (TLR/IL-1) inflammatory pathway as a general target of miR-155. We further demonstrate that miR-155 directly controls the level of important signal transduction molecules. Our observations suggest, therefore, that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli.
MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.
Specimen part
View SamplesDRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we perform microarray expression profiling analysis of lin-54, a DNA-binding member of the DRM complex. To identify genes regulated by LIN-54 in soma and germline, we analyzed wild-type and lin-54 mutant C. elegans embryos and isolated germlines. We chose embryos because they consist primarily of somatic cells, at a developmental stage with both active cell divisions and dynamic developmental gene expression programs. Since lin-54 null animals are sterile, embryos were obtained from a strain carrying the partial loss-of-function allele lin-54(n2990). Germlines were dissected from lin-54(n3423) null adults that lack detectable transcript and protein. The results revealed conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, genomics and cytological analyses show that DRM binding, a DRM binding motif, and LIN-54-regulated genes are all autosome-enriched. One paradoxical exception occurs the germline, where DRM binds autosomes but genes down-regulated in DRM mutants are enriched on X chromosomes.
Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.
Specimen part
View Samples