The development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
Specimen part, Cell line, Subject
View SamplesBovine papillomavirus (BPV) is the causative agent of papillomatosis in cattle. The disease causes cutaneous and mucosal lesions that can be minimized or lead to the appearance of malignant tumors. This study aims to identify possible molecular mechanisms that are behind the pathological processes associated with bovine papillomatosis through the identification of genes related to the development of the lesions. For this, next-generation RNA sequencing was used to assess differentially expressed genes in infected by BPV and non-infected bovines. Three animals with papillomatosis lesion and three without papillomatosis lesion were studied. The Galaxy platform was used to analyze the data generated by the sequencing. The Illumina output files were converted to FASTQ format. Quality evaluation was performed using FastQC and the sequence quality cut was performed using Trimmomatic. TopHat and Bowtie were used to map and align the reads with the reference genome. The abundance of the expressed genes was verified using Cuffilinks. Cuffdiff was used for differential expression analysis. Functional annotation of the differentially expressed genes was performed using Gene Ontology (GO) databases. RNA-sequencing generated a total of 121,722,238 of reads. In the gene expression analysis, a total of 13,421 genes expressed were identified and of these 1343 were differentially expressed. The functional annotation of differentially significant genes showed that many genes presented functions or they were related to metabolic pathways associated with the progression of papillomatosis lesions and cancer development in cattle. Although more studies are needed, this is the first study that focused on a large-scale evaluation of gene expression associated with the BPV infection, which is important to identify possible mechanisms regulated by the host genes that are necessary the development of the lesion Overall design: Analysis of three BPV infected and three BPV non-infected samples
Comparative transcriptomic analysis of bovine papillomatosis.
Age, Specimen part, Treatment, Subject
View SamplesThe global prevalence of obesity is increasing across age and gender. The rising burden of obesity in young people contributes to the early emergence of type 2 diabetes. Having one parent obese is an independent risk factor for childhood obesity. While the detrimental impact of diet-induced maternal obesity on offspring is well established, the extent of the contribution of obese fathers is unclear, as is the role of non-genetic factors in the casual pathway. Here we show that paternal high fat diet exposure programmed -cell dysfunction in their F1 female offspring. Chronic high fat diet consumption in Sprague Dawley fathers led to increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had lower body weight at day-1, increased pubertal growth rate, impaired insulin secretion and glucose tolerance, in the absence of obesity or increased adiposity. Paternal high fat diet was observed to alter gene expression of pancreatic islet genes in adult female offspring (P < 0.001); affected functional clusters includes calcium ion binding, insulin, apoptosis, Wnt and cell cycle organ/system development. This is the first reported study in mammals describing non-genetic, intergenerational transmission of metabolic sequelae of high fat diet from father to offspring. These findings support a role of fathers in metabolic programming of offspring and form a framework for further studies.
Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.
Sex
View SamplesAcross life neural stem cells (NSCs) generate new neurons in the mammalian brain through asymmetric neurogenic and self-renewing cell divisions. However, the cellular mechanisms underlying NSC asymmetry remain unknown. Using fluorescence loss in photobleaching (FLIP) we here show that NSCs in vitro and within the developing forebrain generate a lateral diffusion barrier during cell division resulting in asymmetric segregation of cellular components. The strength of the diffusion barrier is dynamically regulated with age and depends on the proper function of lamin-associated nuclear envelope constituents. Strikingly, age-associated or experimental impairment of the diffusion barrier disrupts asymmetric segregation of damaged proteins, a product of aging. Thus, the data presented here identify a mechanism how age is asymmetrically distributed during somatic stem cell division.
A mechanism for the segregation of age in mammalian neural stem cells.
Age, Specimen part
View SamplesReactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two different mouse injury models, ischemic stroke and neuroinflammation.
Genomic analysis of reactive astrogliosis.
Sex, Specimen part, Treatment
View SamplesAnalyses of gene expression by RNA-Seq in mouse E14.5 fetal liver burst-forming unit erythroid (BFU-E) cells untreated or treated by dexamethasone (DEX) with or without PPARa agonist GW7647. Overall design: RNA-Seq was performed on enriched populations of mouse BFU-E isolated from E14.5 fetal liver, as well as BFU-E enriched cells treated with Dex ± GW7647.
PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
No sample metadata fields
View Samplessingle cell RNA sequencing of freshly isolated mouse BFU-E (burst forming unit-erythroid ) cells cultured for 1, 2, or 3 days with and without 100nM dexamethasone Overall design: six 96 well plates
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Treatment, Subject
View SamplesSingle cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E) , colony forming unit-erythroid (CFU-E), and intermediate stages of erythroid development cells. Overall design: One 96 well plate with 24 BFU-E, 24 CFU-E, 24 cells with 25-35% expression of CD71/CD24, and 24 cells with 50-60% expression of CD71/CD24.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Subject
View SamplesSingle cell mouse BFU-E (burst forming unit-erythroid ) were FACS-deposited into individual wells of a 96-well plate containing PCM either with or without 100 nM dexamethasone. After 16hrs cells from wells that contained a single pair of daughter cells were separated and each individual daughter cell transcriptome was obtained by single cell RNA-seq. Overall design: 13 daughter cells pairs untreated and 13 pairs treated with 100 nM dexamethasone.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Treatment, Subject
View SamplesSingle cell RNA sequencing of freshly isolated mouse burst forming unit-erythroid (BFU-E). Overall design: One 96 well plate with 24 BFU-E.
Rate of Progression through a Continuum of Transit-Amplifying Progenitor Cell States Regulates Blood Cell Production.
Specimen part, Cell line, Subject
View Samples