Stat5 is a latent transcription factor that regulates essential growth and survival functions in normal cells. Constitutive activity of Stat5 and the involvement of its C-terminally truncated variant have been implicated in blood cell malignancies and mammary or breast cancer.
Forced activation of Stat5 subjects mammary epithelial cells to DNA damage and preferential induction of the cellular response mechanism during proliferation.
Specimen part, Disease, Disease stage
View SamplesPurpose: the goal of this project is to study the effects of the PFOS (perfluorooctanesulfonate) in the transcriptome profiling (RNA-seq) of exposed zebrafish larvae. Methods: Total RNA was isolated from the samples using AllPrep DNA/RNA Mini Kit (Qiagen, CA, USA) as described by the manufacturer. Three high quality sample per condition were chosen to the mRNA enrichment using KAPA Stranded mRNA-Seq Kit Illumina® Platforms (Kapa Biosystems). Transcriptomic profiles were generated by deep sequencing using Illumina TruSeq SBS Kit v3-HS (pair-ended; 2x76bp) on a HiSeq2000 sequencing system. Image analysis, base calling and quality scoring of the run were processed using the manufacturer's software Real Time Analysis (RTA 1.13.48) and followed by generation of FASTQ sequence files by CASAVA. Statistical analysis: RNA-seq reads were aligned to the D. rerio reference genome (GRCz10) using STAR version 2.5.1b . Genes annotated in GRCz10.84 were quantified using RSEM version 1.2.28 with default parameters. Differential expression analysis between all PFOS conditions was performed with the DESeq2 (v.1.10.1) R package with the Likelihood ratio test option. ANOVA-PLS was performed on the normalized data using the lmdme package in R (v. 1.0.136, R Core Team). Results: We generated on average 39 million paired-end reads for each sample and identified aproximatelly 24500 transcripts. 1434 differentially expressed genes (DEGs) were detected which could be divided in 2 clusters including 767 and 667 genes, respectively. Affected metabolic pathways were analyzed from the DEGs: lipid transport and metabolism, protein ubiquination, antigen processing, immune system, apoptosis, trans-membrane, cell matrix, Zn-ion binding, cytokines and JAK-STAT signaling pathways', among others, were down or upregulated. Conclusions: Our results suggest a complex, multiple endocrine disruption-like toxic effects at a concentrations well bellow the 1 mg/L, considered as the LOAEC/NOAEC for many of the macroscopic effects traditionally linked to PFOS toxicity in zebrafish embryos. While our results confirm the known effect of PFOS in lipid metabolism, we found a clear decrease on expression of many genes related to natural immunity and defense against infections. We propose that this transcriptional pattern may be a marker for the immunotoxic effects of PFOS and other related substances in fish and other vertebrates, including humans. We concluded that our analysis allowed us the identification of underlying molecular mechanisms occurring simultaneously at the exposed animals. While this approach is very useful to analyze the effects of compounds, like PFOS, able to interact with different cellular targets, we believe that it can be also applied to the characterization of the different toxic components present in complex natural mixtures. Overall design: Whole embryo (5 dpf; wild type zebrafish) mRNA profiles of 4 groups (control, 0.03, 0.3 and 1 ppm of PFOS) were generated by deep sequencing, in triplicate, using Illumina TruSeq SBS Kit v3-HS (pair-ended) on a HiSeq2000 sequencing system.
Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos.
Age, Subject
View SamplesThe lack of mouse models permitting the specific ablation of tissue-resident macrophages and monocyte-derived cells complicates understanding of their contribution to tissue integrity and to immune responses. Here we use a new model permitting diphtheria-toxin (DT)-mediated depletion of those cells and in which dendritic cells are spared. We showed that the myeloid cells of the mouse ear skin dermis are dominated by a population of melanin-laden macrophages, called melanophages, that has been missed in most previous studies. By using gene expression profiling, DT-mediated ablation and parabiosis, we determined their identity including their similarity to other skin macrophages, their origin and their dynamics. Limited information exist on the identity of the skin cells responsible for long-term tattoo persistence. Benefiting of our knowledge on melanophages, we showed that they are responsible for retaining tattoo pigment particles through a dynamic process which characterization has direct implications for improving strategies aiming at removing tattoos.
Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
Sex, Age, Specimen part, Cell line
View SamplesThe PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
Sex, Age, Specimen part
View SamplesThe PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
Sex, Specimen part
View SamplesThe PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
Specimen part, Cell line
View SamplesPulmonary alveoli are complex architectural units thought to undergo endogenous or pharmacologically induced programs of regeneration and degeneration. To study the molecular mechanism of alveoli loss mice were calorie restricted at different timepoints. Lungs were harvested and processed for RNA extraction.
Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression.
Time
View SamplesElucidating the top of the mammary epithelial cell hierarchy is highly important for understanding its regeneration capabilities and identifying target cells for transformation. Aiming for enriched mammary epithelial stem cell population, CD200highCD200R1high epithelial cells were identified. These cells represent ~50% of the mammary repopulating units (MRUs, CD49fhigh CD24med ) and termed MRUCD200/CD200R1. Gene expression of these cells was compared to all other MRU cells, termed MRUnot CD200/CD200R1, as well as individual CD200+ population (MRU-CD200R1-) and CD200R1+ population (MRU-CD200-). Overall design: Gene expression from mammary epithelial cells carrying sorted by CD200, CD200R1 markers and MRU markers. Four populations were sequenced: MRU-positive CD200 positive and CD200R1 positive; MRU-positive and not CD200 positive CD200R1 positive; not MRU CD200 positive CD200R1 negative; not MRU CD200 negative CD200R1 positive. There are 5 replicates from 5 individual mice.
High Expression of CD200 and CD200R1 Distinguishes Stem and Progenitor Cell Populations within Mammary Repopulating Units.
Sex, Specimen part, Cell line, Subject
View SamplesGiven the heterogeneity of disease evident from study of the presentation, histomorphology, disease course, and molecular lesions of bladder cancer, a cohort of 8 non-muscle invasive and 11 muscle invasive bladder cancers were profiled for gene expression using the Affymetrix HG-U133A platform.
Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic characteristics in human cancer.
No sample metadata fields
View Samples