Alternative splicing (AS) is a post-transcriptional gene regulatory mechanism that contributes to proteome diversity. Aberrant splicing mechanisms (mutations, polymorphisms, insertion/deletion etc.) contribute to various cancers and muscle related conditions such as Duchenne muscular dystrophy. However, dysregulation of AS in Cancer Cachexia (CC) patients remains unexplored. Our objectives were (i) to profile alternatively spliced genes (ASGs) on a genome-wide scale, and (ii) to identify DE alternatively spliced genes (DASGs) associated with CC. Rectus abdominis muscle biopsies obtained from cancer patients were stratified into cachectic cases (n=21, classified based on International consensus diagnostic framework for CC) and non-cachectic controls (n=19, weight stable cancer patients). Human Transcriptome array 2.0 was used for profiling ASGs using the total RNA isolated from muscle biopsies. Representative DASG signatures were validated using semi-quantitative RT-PCR. We identified 8960 ASGs, of which 922 DASGs (772 up-regulated, 150 down-regulated) were identified at > 1.4 fold-change and p < 0.05. Representative DASGs when validated by semi-quantitative RT-PCR also showed similar trends, confirming the primary findings from the genome-wide arrays. Identified DASGs were associated with myogenesis, adipogenesis, protein ubiquitination and inflammation. Up to 10% of the DASGs exhibited cassette exon (exon included or skipped) as a predominant form of AS event. We also observed other forms of AS events such as intron retention, alternate promoters. Overall, we have, for the first time conducted global profiling of muscle tissue to identify DASGs associated with CC. The mechanistic roles of the identified DASGs in CC pathophysiology using model systems is warranted, as well as replication of findings in independent cohorts.
Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia.
Specimen part
View SamplesMedium conditioned by LLC cells stimulates thermogenic gene expression when added onto primary adipocytes. We generated single cell colonies from parental LLC cells. Media conditioned by the subclones stimulated thermogenic gene expression in primary adipocytes at varying degrees.
Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia.
Specimen part
View SamplesStat5 is a latent transcription factor that regulates essential growth and survival functions in normal cells. Constitutive activity of Stat5 and the involvement of its C-terminally truncated variant have been implicated in blood cell malignancies and mammary or breast cancer.
Forced activation of Stat5 subjects mammary epithelial cells to DNA damage and preferential induction of the cellular response mechanism during proliferation.
Specimen part, Disease, Disease stage
View SamplesPulmonary alveoli are complex architectural units thought to undergo endogenous or pharmacologically induced programs of regeneration and degeneration. To study the molecular mechanism of alveoli loss mice were calorie restricted at different timepoints. Lungs were harvested and processed for RNA extraction.
Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression.
Time
View SamplesElucidating the top of the mammary epithelial cell hierarchy is highly important for understanding its regeneration capabilities and identifying target cells for transformation. Aiming for enriched mammary epithelial stem cell population, CD200highCD200R1high epithelial cells were identified. These cells represent ~50% of the mammary repopulating units (MRUs, CD49fhigh CD24med ) and termed MRUCD200/CD200R1. Gene expression of these cells was compared to all other MRU cells, termed MRUnot CD200/CD200R1, as well as individual CD200+ population (MRU-CD200R1-) and CD200R1+ population (MRU-CD200-). Overall design: Gene expression from mammary epithelial cells carrying sorted by CD200, CD200R1 markers and MRU markers. Four populations were sequenced: MRU-positive CD200 positive and CD200R1 positive; MRU-positive and not CD200 positive CD200R1 positive; not MRU CD200 positive CD200R1 negative; not MRU CD200 negative CD200R1 positive. There are 5 replicates from 5 individual mice.
High Expression of CD200 and CD200R1 Distinguishes Stem and Progenitor Cell Populations within Mammary Repopulating Units.
Sex, Specimen part, Cell line, Subject
View SamplesGiven the heterogeneity of disease evident from study of the presentation, histomorphology, disease course, and molecular lesions of bladder cancer, a cohort of 8 non-muscle invasive and 11 muscle invasive bladder cancers were profiled for gene expression using the Affymetrix HG-U133A platform.
Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic characteristics in human cancer.
No sample metadata fields
View SamplesIt has been shown that dexamethasone (Dex) impairs the normal lung septation that occurs in the early postnatal period. Treatment with retinoic acid (ATRA) abrogates the effects of Dex. To understand the molecular basis for the Dex indiced inhibition of the formation of the alveoli and the ability of ATRA to prevent the inhibition of septation, gene expression was analyzed in 4-day old mice treated with diluent (control), Dex-treated and ATRA+Dex-treated.
DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice.
Age, Specimen part
View SamplesThe lack of mouse models permitting the specific ablation of tissue-resident macrophages and monocyte-derived cells complicates understanding of their contribution to tissue integrity and to immune responses. Here we use a new model permitting diphtheria-toxin (DT)-mediated depletion of those cells and in which dendritic cells are spared. We showed that the myeloid cells of the mouse ear skin dermis are dominated by a population of melanin-laden macrophages, called melanophages, that has been missed in most previous studies. By using gene expression profiling, DT-mediated ablation and parabiosis, we determined their identity including their similarity to other skin macrophages, their origin and their dynamics. Limited information exist on the identity of the skin cells responsible for long-term tattoo persistence. Benefiting of our knowledge on melanophages, we showed that they are responsible for retaining tattoo pigment particles through a dynamic process which characterization has direct implications for improving strategies aiming at removing tattoos.
Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.
Specimen part, Treatment
View SamplesApproximately 5% of all breast cancers can be attributed to an inherited mutation in one of two cancer susceptibility genes, BRCA1 and BRCA2. We searched for genes that have the potential to distinguish healthy BRCA1 and BRCA2 mutation carriers from non-carriers based on differences in expression profiling. Using expression microarrays we compared gene expression of irradiated lymphocytes from BRCA1 and BRCA2 mutation carriers versus control non-carriers. We identified 137 probe sets in BRCA1 carriers and 1345 in BRCA2 carriers with differential gene expression. Gene Ontology analysis revealed that most of these genes relate to regulation pathways of DNA repair processes, cell cycle regulation and apoptosis. Real-time PCR was performed on the 36 genes which were most prominently differentially expressed in the microarray assay; 21 genes were shown to be significantly differentially expressed in BRCA1 or BRCA2 mutation carriers as compared to controls (p<0.05). Based on a validation study with 40 mutation carriers and 17 non-carriers, a multiplex model that included six or more coincidental genes of 18 selected genes was constructed in order to predict the risk of carrying a mutation. The results using this model showed sensitivity 95% and specificity 88%. In summary, our study provides insight into the biological effect of heterozygous mutations in BRCA1 and BRCA2 genes in response to ionizing irradiation induced DNA damage. We also suggest a set of 18 genes that can be used as a prediction and screening tool for BRCA1 or BRCA2 mutational carriers by using easily obtained lymphocytes.
Determination of molecular markers for BRCA1 and BRCA2 heterozygosity using gene expression profiling.
Specimen part
View Samples