Results of knocking-down AREG expression in SUM-149 cells by lenitviral infection of shRNA vectors and measuring gene expression provides information as to what genes are regulated by AERG in inflammatory breast cancer cells.
Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer.
Disease, Disease stage, Cell line
View SamplesLow oxygen stress dynamically regulates the translation of cellular mRNAs as a means of energy conservation in seedlings of Arabidopsis thaliana. Most of the highly hypoxia-induced mRNAs are recruited to polysomes and actively translated, whereas other cellular mRNAs become translationally inactive and are either targeted for stabilization or degradation. Here we identify the involvement of OLIGOURIDYLATE BINDING PROTEIN 1 (UBP1), a triple RNA Recognition Motif protein, in dynamic and reversible aggregation of translationally repressed mRNAs during hypoxia. Mutation or downregulation of UBP1C interferes with seedling establishment and reduces survival of low oxygen stress. By use of messenger ribonucleoprotein immunopurification, we show that UBP1C constitutively binds a subpopulation of mRNAs characterized by U-rich 3-untranslated regions under normoxic conditions. During hypoxia, UBP1C association with non-U-rich mRNAs is enhanced concomitant with its aggregation into microscopically visible cytoplasmic foci, referred to as UBP1 stress granules (SGs). This UBP1C-mRNA association occurs as global levels of protein synthesis decline. Upon reoxygenation, rapid UBP1 SG disaggregation coincides with the return of the stabilized mRNAs to polysomes. The mRNAs that are highly induced and translated during hypoxia largely circumvent UBP1C sequestration. Thus, UBP1 is established as a component of dynamically assembled cytoplasmic mRNPs that sequester mRNAs that are poorly translated during a transient low energy stress.
Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis.
Specimen part, Disease, Treatment
View SamplesMicroarray experiment with polysomal and non-polysomal RNAs extracted under non-stress and mild-dehydration stress.
mRNA sequence features that contribute to translational regulation in Arabidopsis.
No sample metadata fields
View SamplesTranscriptome, translatome, and CSP1 RNA regulon analysis of 25-d-o Arabidopsis rosettes exposed to 12h low temperature (4C) treatment.
Cold shock proteinĀ 1 chaperones mRNAs during translation in Arabidopsis thaliana.
Age, Specimen part, Treatment
View SamplesCockayne syndrome (CS) is an inherited neurodevelopmental disorder with progeroid features. Although the genes responsible for CS have been implicated in a variety of DNA repair- and transcription-related pathways, the nature of the molecular defect in CS remains mysterious. We sought to define this defect by expression analysis of cells lacking functional CSB, a SWI/SNF-like ATPase that is responsible for most CS cases.
Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Disease, Cell line
View SamplesBreast and ovarian cancer susceptibility genes, BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood leads to increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high throughput sequencing in breast epithelial cells. These experiments revealed a critical role for BRCA1 and PALB2 in transcriptional responsiveness to NF-kB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for these proteins in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Cell line
View SamplesBreast and ovarian cancer susceptibility genes, BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood leads to increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high throughput sequencing in breast epithelial cells. These experiments revealed a critical role for BRCA1 and PALB2 in transcriptional responsiveness to NF-kB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for these proteins in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity.
Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals.
Cell line, Treatment
View SamplesThe small nuclear RNA (snRNA)-activating protein complex (SNAPc) is a basal transcription factor that mediates the transcriptional activation of snRNAs. Here, we describe the genome-wide occupancy of the SNAPC1_and SNAPC4 subunits of SNAPc. While the SNAPC4 occupancy was in accord with the role for SNAPc in snRNA transcription, SNAPC1_displayed a broader genomic profile mirroring that of RNA polymerase II at highly active protein-coding genes. Our functional analysis revealed a role for SNAPC1_in regulation of both basal and activator-induced transcription of protein-coding genes. These studies expand the role for SNAPC1_beyond its regulation of snRNA transcription.
Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals.
Cell line, Treatment
View Samples