Low oxygen stress dynamically regulates the translation of cellular mRNAs as a means of energy conservation in seedlings of Arabidopsis thaliana. Most of the highly hypoxia-induced mRNAs are recruited to polysomes and actively translated, whereas other cellular mRNAs become translationally inactive and are either targeted for stabilization or degradation. Here we identify the involvement of OLIGOURIDYLATE BINDING PROTEIN 1 (UBP1), a triple RNA Recognition Motif protein, in dynamic and reversible aggregation of translationally repressed mRNAs during hypoxia. Mutation or downregulation of UBP1C interferes with seedling establishment and reduces survival of low oxygen stress. By use of messenger ribonucleoprotein immunopurification, we show that UBP1C constitutively binds a subpopulation of mRNAs characterized by U-rich 3-untranslated regions under normoxic conditions. During hypoxia, UBP1C association with non-U-rich mRNAs is enhanced concomitant with its aggregation into microscopically visible cytoplasmic foci, referred to as UBP1 stress granules (SGs). This UBP1C-mRNA association occurs as global levels of protein synthesis decline. Upon reoxygenation, rapid UBP1 SG disaggregation coincides with the return of the stabilized mRNAs to polysomes. The mRNAs that are highly induced and translated during hypoxia largely circumvent UBP1C sequestration. Thus, UBP1 is established as a component of dynamically assembled cytoplasmic mRNPs that sequester mRNAs that are poorly translated during a transient low energy stress.
Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis.
Specimen part, Disease, Treatment
View SamplesMicroarray experiment with polysomal and non-polysomal RNAs extracted under non-stress and mild-dehydration stress.
mRNA sequence features that contribute to translational regulation in Arabidopsis.
No sample metadata fields
View SamplesTranscriptome, translatome, and CSP1 RNA regulon analysis of 25-d-o Arabidopsis rosettes exposed to 12h low temperature (4C) treatment.
Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana.
Age, Specimen part, Treatment
View SamplesCockayne syndrome (CS) is an inherited neurodevelopmental disorder with progeroid features. Although the genes responsible for CS have been implicated in a variety of DNA repair- and transcription-related pathways, the nature of the molecular defect in CS remains mysterious. We sought to define this defect by expression analysis of cells lacking functional CSB, a SWI/SNF-like ATPase that is responsible for most CS cases.
Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling.
Subject
View Samples7d-old WT ler seedlings were submitted to 12h of non-stress (air) or hypoxia-stress treatment under low light conditions (45 uM m-2 s-2), and Total and Large Polysome RNA from both treatments were extracted and hybridized against Affymetrix genome chips. Values were used to evaluate changes in transcript abundance and transcript association with large polysomal complexes.
Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation.
No sample metadata fields
View SamplesGene expression analysis of 7d-old Arabidopsis seedlings exposed to short term (2 h) hypoxia, long term (9 h) hypoxia, and 1 h reoxygenation after long term (9 h) hypoxia to evaluate the regulation of gene expression at the level of translation.
Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.
Age
View SamplesMPK6 shows transient increase in activity under hypoxia with maximal activity at 2 hrs. To study the role of MPK6 in hypoxia in Arabidopsis, 10 do seedlings of WT, mpk6 and MPK6 plants were exposed to 2 hrs hypoxia and 2hr air (mock).
Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis.
Specimen part
View SamplesBackground The evolution of female choice mechanisms favouring males of their own kind is considered as crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown.
Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.
Age, Specimen part, Treatment
View SamplesReactive oxygen species, generated in vivo or exogenously encountered, constantly challenge living organisms. Oxidation of polyunsaturated fatty acids (PUFA), which are susceptible to oxidant attack, can lead to initiation of lipid peroxidation and in turn rapid production of toxic lipid hydroperoxides. Eukaryotic microorganisms such as Saccharomyces cerevisiae can survive harsh industrial conditions that contain high levels of the PUFA linoleic acid and its oxidised derivative, linoleic acid hydroperoxide (LoaOOH). The precise signalling and response mechanisms induced by yeast to overcome lipid hydroperoxide stress are ill understood.
Transcriptomic insights into the molecular response of Saccharomyces cerevisiae to linoleic acid hydroperoxide.
No sample metadata fields
View SamplesMore than two thirds of breast cancers express the estrogen receptor (ER) and depend on estrogen for growth and survival. Therapies targeting ER function including aromatase inhibitors that block the production of estrogens and ER antagonists that alter ER transcriptional activity play a central role in the treatment of ER+ breast cancers of all stages. In contrast to ER- breast cancers, which frequently harbor mutations in the p53 tumor suppressor, ER+ breast cancers are predominantly wild type for p53. Despite harboring wild type p53, ER+ breast cancer cells are resistant to chemotherapy-induced apoptosis in the presence of estrogen. Using genome-wide approaches we have addressed the mechanism by which ER antagonizes the pro-apoptotic function of p53. Interestingly both ER agonists such as estradiol and selective ER modulators (SERM) such as tamoxifen promote p53 antagonism. In contrast the full ER antagonist fulvestrant blocks the ability of ER to inhibit p53-mediated cell death. This suggests an improved strategy for the treatment of ER+ breast cancer utilizing antagonists that completely block ER action together with drugs that activate p53-mediated cell death.
Estrogen receptor prevents p53-dependent apoptosis in breast cancer.
Cell line, Treatment
View Samples