By contrast with mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of spared cardiomyocytes. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. While it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. In this study, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin-1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration. Overall design: Deep sequencing of isolated single epicardial cells
Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.
Age, Specimen part, Cell line, Subject
View SamplesVertebrates are colonized at birth by complex microbial communities (microbiota) that influence diverse aspects of host biology. We have used a functional genomics approach to identify zebrafish genes that are differentially expressed in response to the microbiota. We assessed RNA expression profiles from zebrafish larvae at 6 days post-fertilization (dpf) that were either raised continuously in the absence of any microorganism (germ-free or GF), or raised GF through 3dpf then colonized with a normal zebrafish microbiota (conventionalized or CONVD).
Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract.
Age, Specimen part
View SamplesRNA sequencing was performed on RNA isolated from groups of 6 hpf wild type and mecp2-null embryos (n=3 biological replicates per condition with 30 embryos pooled per replicate). DESeq2 analysis was performed using https://usegalaxy.org/ Overall design: Whole embryo mRNA profile of 30 pooled mecp2-null or wild type 6 hpf zebrafish embryos, in triplicate, using the Illumina HiSeq4000 platform
Mecp2 regulates <i>tnfa</i> during zebrafish embryonic development and acute inflammation.
No sample metadata fields
View SamplesOur previous studies have shown that C/EBP plays a critical role in human endometrial stromal decidualization. In order to identify the molecular pathways regulated by C/EBP during decidualization, we performed gene expression profiling using RNA isolated from normal and C/EBP-deficient human endometrial stromal cells. The microarray results revealed that several key regulators of stromal differentiation, such as BMP2, Wnt4, IL-11R and STAT3, operate downstream of C/EBP during decidualization. Further studies revealed that STAT3 is a direct target of C/EBP and plays an important role in cytokine signal during the decidualization process. Gene expression profiling, using STAT3-deficient HESCs, showed an extensive overlap of pathways downstream of STAT3 and C/EBP during stromal cell differentiation.
Regulation of human endometrial stromal proliferation and differentiation by C/EBPβ involves cyclin E-cdk2 and STAT3.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.
Specimen part, Treatment
View SamplesUlipristal acetate (UPA), also referred to as VA/CDB-2914, is a new and promising emergency contraceptive. It is a selective progesterone receptor modulator (SPRM) that has been approved in Europe and the USA for emergency contraception.
Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.
Specimen part, Treatment
View SamplesPrevious studies have shown that PR is a critical regulator of ovulation. The PR-null mice (PRKO) failed to ovulate due to a failure in the rupture of the preovulatory follicles.
Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects.
Age, Specimen part
View SamplesGlomerular expression data from human kidney biopsy in African American subjects with glomerulopathies
Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects.
Age, Specimen part
View SamplesTubulointersitial expression data from human kidney biopsy in African American subjects with glomerulopathies
Integrative Genomics Identifies Novel Associations with APOL1 Risk Genotypes in Black NEPTUNE Subjects.
Age, Specimen part
View Samples