mRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 (http://r2.amc.nl) in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients.
Specimen part, Cell line
View SamplesmRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 (http://r2.amc.nl) in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients.
Specimen part, Cell line
View SamplesT-bet is pivotal for initiation and perpetuation of Th1 immunity. Identification of novel T-bet regulated genes is crucial for further understanding the biology of this transcription factor.
IL-36γ/IL-1F9, an innate T-bet target in myeloid cells.
Cell line, Treatment
View SamplesRenal hypoxia is widespread in acute kidney injury (AKI) of various aetiologies. Hypoxia adaptation, conferred through the hypoxia-inducible factor (HIF), appears to be insufficient. Here we show that HIF activation in renal tubules through Pax8-rtTA-based inducible knockout of von Hippel-Lindau protein (VHL-KO) protects from rhabdomyolysis-induced AKI. In this model, histological observations indicate that injury mainly affects proximal convoluted tubules, with 5% necrosis at d1 and 40% necrosis at d2. HIF-1alpha up-regulation in distal tubules reflects renal hypoxia. However, lack of HIF in proximal tubules suggests insufficient adaptation by HIF.
Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI.
Specimen part, Disease, Disease stage, Treatment
View SamplesTissue and organ function has been conventionally understood in terms of the interactions among discrete and homogeneous cell types. This approach has proven difficult in neuroscience due to the marked diversity across different neuron classes, but may also be further hampered by prominent within-class variability. Here, we considered a well-defined, canonical neuronal population – hippocampal CA1 pyramidal cells – and systematically examined the extent and spatial rules of transcriptional heterogeneity. Using next-generation RNA sequencing, we identified striking variability in CA1 PCs, such that the differences along the dorsal-ventral axis rivaled differences across distinct pyramidal neuron classes. This variability emerged from a spectrum of continuous expression gradients, producing a profile consistent with a multifarious continuum of cells. This work reveals an unexpected amount of variability within a canonical and narrowly defined neuronal population and suggests that continuous, within-class heterogeneity may be an important feature of neural circuits. Overall design: Hippocampal RNA profiles were generated by deep sequencing on Illumina HiSeq 2500, with three biological replicates per population
Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons.
Subject
View SamplesIron is essential for many cellular processes and is required by bacteria for replication. To acquire iron from the host, pathogenic Gram-negative bacteria secrete siderophores, including Enterobactin (Ent). However, Ent is bound by the host protein Lipocalin 2 (Lcn2), preventing bacterial reuptake of aferric or ferric Ent. In two experiments we treated A549 (lung cancer cell line) cells with Lcn2, Ent, and iron, alone and in combination. In experiment 1, biological duplicates of 4 conditions were used: PBS control, Lcn2, Lcn2+Ent, and Lcn2+Ent+iron. In experiment 2, 4 biological replicates of 4 conditions were used: PBS control, Ent, iron, and Ent+iron. Targets made from the samples were hybridized to Affymetrix Human Gene 1.0 ST arrays to measure transcript abundances. The RMA algorithm was used to estimate transcript levels. Replicate samples were exchangeable, so we fit one-way ANOVA models to log2-transformed data separately to each experiment, and tested for pairwise differences between groups in each experiment, as well as asking if the Ent vs. PBS differences were larger or smaller than the Ent+iron vs. iron differences (Ent by iron interactions). We report results for 29096 probe-sets that were not annotated as positive or negative controls on the array. A supplementary Excel workbook is provided that contains the estimated expression level, some probe-set annotation, and simple statistical analysis for each probe-set. It may be convenient for some users, however obtaining newer probe-set annotation may be advisable.
Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells.
Specimen part, Cell line
View SamplesThe eukaryotic translation initiation factor (eIF) 3a is described in various tumor entities as potential tumor marker involved in development and progression of cancer. eIF3a is the largest subunit of the eIF3 complex, a key functional entity in 80S establishment and translation initiation. We hypothesize that eIF3a is more a specific than global translation initiator and involved in signalling pathways that are frequently targeted in UBC therapy.
eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesThe discovery of cytosine hydroxymethylation (5-hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behavior in colon cancer. 5-hmC is globally reduced in proliferating cells such as colon tumors and the gut crypt progenitors, from which tumors can arise. Here, we show that colorectal tumors and cancer cells express Ten-Eleven Translocation (TET) transcripts at levels similar to normal tissues. Genome-wide analyses show that promoters marked by 5-hmC in normal tissue, and those identified as TET2 targets in colorectal cancer cells, are resistant to methylation gain in cancer. In vitro studies of TET2 in cancer cells confirm that these promoters are resistant to methylation gain independently of sustained TET2 expression. We also find that a considerable number of the methylation gain-resistant promoters marked by 5-hmC in normal colon overlap with those that are marked with poised bivalent histone modifications in embryonic stem cells. Together our results indicate that promoters that acquire 5-hmC upon normal colon differentiation are innately resistant to neoplastic hypermethylation by mechanisms that do not require high levels of 5-hmC in tumors. Our study highlights the potential of cytosine modifications as biomarkers of cancerous cell proliferation.
5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer.
Sex, Specimen part, Subject
View SamplesOvarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer.
Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78.
Disease
View Samples