The equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. This is particularly important for the liver, a highly differentiated organ with systemic metabolic functions still endowed with unparalleled regenerative potential. Hepatocellular de-differentiation and uncontrolled proliferation are at the basis of liver carcinogenesis. We have identified SLU7, a pre-mRNA splicing regulator inhibited in hepatocarcinoma as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Hepatocellular proliferation and a switch to a tumor-like glycolytic phenotype were also observed. Mechanistically, SLU7 governed the splicing and/or expression of essential genes for hepatocellular differentiation like SRSF3 and HNF4a, and was identified as a critical factor in cAMP-regulated gene transcription. SLU7 is therefore central for hepatocyte identity and quiescence.
Splicing regulator SLU7 is essential for maintaining liver homeostasis.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Age, Specimen part, Treatment
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi.
Specimen part, Treatment
View SamplesMacrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signalling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomics and proteomics approaches. We identified a common pattern of genes transcriptionally regulated that overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member, CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine, TNF. Cd180-silenced cells produced increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases the CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response. Overall design: Genome-wide changes in gene Expression in mouse bone marrow-derived macrophages stimulated with Borrelia burgdorferi or left unstimulated were generated by RNAseq.
Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions.
Age, Specimen part, Cell line, Treatment, Subject
View Samples