GDF5 is a potent tenogenic differentiation inducer. We previously demonstrated that GDF5 induced in vitro tenogenesis of human bone marrow-derived stromal cells (hMSC).
Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells.
Specimen part, Subject
View SamplesTo identify in vivo new cardiac SRF target genes and to study the response of these novel genes to SRF overexpression, we employed a cardiac-specific, transgenic mouse model that has a phenotype in young adulthood which resembles that of the typically aged heart. Using this cardiac aging model, we identified 207 genes that are important to cardiac function that were differentially expressed in vivo. Among them, 192 genes had SRF binding motifs (56 with CArG and 136 with CArG-like elements) in their promoter region. Fifty-one of 56 genes with classic CArG elements were not previously reported. These SRF target genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes were significantly increased. Using public databases of mouse models of stress, we also found that altered expression of the SRF target genes occurred in these hearts as well. Thus, SRF target genes are actively regulated under various physiological and pathological conditions, including hemodynamic stress. The mild elevation of SRF protein in the rodent heart that is observed during typical adult aging may have a major impact on many SRF target genes, thereby affecting cardiac structure and performance. In addition, these results could help to enhance our understanding of SRF regulation of cellular processes, including metabolic and cytoskeletal function.
Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts.
No sample metadata fields
View SamplesBRAF inhibitors are highly effective therapies for patients with BRAF V600 mutated metastatic melanoma. Patients who receive BRAF inhibitors develop a variety of hyper-proliferative skin conditions, whose pathogenic basis is the paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyper-proliferative skin changes improve when a MEK inhibitor is co-administered, as a MEK inhibitor blocks paradoxical MAPK activation. We tested whether we could take advantage of the mechanistic understanding of the skin hyper-proliferative side effects of BRAF inhibitors to accelerate skin wound healing by inducing paradoxical MAPK activation. Here we show that the BRAF inhibitor vemurafenib accelerates human keratinocyte proliferation and migration by increasing ERK phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing models in mice accelerated cutaneous wound healing and improved the tensile strength of healing wounds through paradoxical MAPK activation; addition of a MEK inhibitor reversed the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor did not increase the incidence of cutaneous squamous cell carcinomas in mice even after the application of a carcinogen. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. Overall design: Full depth incisional wound mice tissues with/without Vemurafenib treatment were sent for RNAseq analysis on day 2, 6 and 14
Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.
Specimen part, Subject
View Samples