We perform RNA-seq on matched orthotopic murine primary and metastatic prostate cancer samples to identify differential gene expressions Overall design: RNA-seq was performed on orthotopic murine primary and metastatic tumor samples using Illumina Hi-Seq 2000 platform
Top2a identifies and provides epigenetic rationale for novel combination therapeutic strategies for aggressive prostate cancer.
No sample metadata fields
View SamplesmicroRNA-155 acts as an oncogenic miRNA in B-cell lymphoproliferative disorders including Waldenstrom Macroglobulinemia (WM) and Chronic Lymphocytic Leukemia (CLL).
LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas.
Cell line
View SamplesSingle-cell sorted cells from the osteocytic cell line Ocy454 were screened for high- and low-Sost/sclerostin expression to see changes in other gene expressions related to Sost/sclerostin.
Carbonic anhydrase III protects osteocytes from oxidative stress.
No sample metadata fields
View SamplesBackground: Constant hypoxia (CH) and intermittent hypoxia (IH) occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s) in D. melanogaster after exposure to severe (1% O2) intermittent or constant hypoxia.
Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.
Specimen part
View SamplesInterferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.
No sample metadata fields
View SamplesDuring the past two decades although many genes e.g.,Gdf5, Wnt9a, Noggin etc. have been identified and characterized in joint development, still a comprehensive understanding of molecular network operational in articular cartilage morphogenesis is far from being drawn. This might be due to incompleteness in the number of molecules identified.
A comprehensive mRNA expression analysis of developing chicken articular cartilage.
Specimen part
View SamplesWaldenstrms macroglobulinemia (WM) is a distinct clinicobiological entity defined as a B-cell neoplasm characterized by a lymphoplasmacytic infiltrate in the bone marrow and immunoglobulin M paraprotein production. Cytogenetic analysis is limited by the difficulty in obtaining tumor metaphases and the genetic basis of the disease remains poorly defined. We performed a comprehensive analysis in 42 WM patients by using high-resolution array-based comparative genomic hybridization with the Human Genome 244A microarray. Overall, 83% of samples have chromosomal abnormalities, with a median of three abnormalities per patient (range 0 to 27). The most common abnormality was 6q deletion (40%) and four non-overlapped minimal deleted regions (MDR) were identified. Gain of 6p was the second most common abnormality (17%) and its presence was always concomitant with 6q loss. An interstitial MDR was delineated at 13q14 including MIRN15A and MIRN16-1 in 10% of patients. Other recurrent deletions were 7q22, 8p, 11q22-q23, 11q23-q24 and 17p11-p13 (7% each). Copy gains were identified in chromosomes 18 (17%), 4 (12%), 3 (10%), 8q (10%) and Xq27.1-q28 (10%). To note, we reported biallelic deletions and/or inactivating mutations with uniparental disomy in TRAF3 and TNFAIP3, two negative regulators of the NF-kB signaling pathway. Furthermore, we confirmed the association between TRAF3 inactivation and increased transcriptional activity of NF-kB target genes. Mutational activation of the NF-kB pathway, which is normally activated by ligand-receptor interactions within the bone marrow microenvironment, highlight its biologic importance, and suggest a therapeutic role for inhibitors of NF-KB pathway activation in the treatment of Waldenstrms macroglobulinemia.
Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia.
Sex, Age, Specimen part
View SamplesHypoxia plays a key pathogenic role in the outcome of many pathologic conditions. To elucidate how organisms successfully adapt to hypoxia, a population of Drosophila melanogaster was generated, through an iterative selection process, that is able to complete its lifecycle at 4% O2, a level lethal to the starting parental population. Transcriptomic analysis of flies adapted for >200 generations was performed to identify pathways and processes that contribute to the adapted phenotype, comparing gene expression of three developmental stages with generation-matched control flies. A third group was included, hypoxia-adapted flies reverted to 21% O2 for five generations, to address the relative contributions of genetics and hypoxic environment to the gene expression differences. We identified the largest number of expression differences in 0.5-3 hr post-eclosion adult flies that were hypoxia-adapted and maintained in 4% O2, and found evidence that changes in Wnt signaling contribute to hypoxia tolerance in flies.
Wnt pathway activation increases hypoxia tolerance during development.
No sample metadata fields
View SamplesMice lacking topoisomerase II (Top II) are known to exhibit a perinatal death phenotype. In the current study, transcription profiles of the brains of wild type and top2 knockout mouse embryos were generated. Surprisingly, only a small number (1-4%) of genes were affected in top2 knockout embryos. However, the expression of nearly 30% of developmentally regulated genes was either up- or down-regulated.
Role of topoisomerase IIbeta in the expression of developmentally regulated genes.
Sex, Specimen part
View SamplesIn Saccharomyces cerevisiae, Sen1 is a 252-kDa, nuclear superfamily-1 RNA/DNA helicase that encoded by an essential gene SEN1 (Senataxin). It is an important component of the Nrd1p-Nab3p-Sen1p (NRD1) complex that regulates the transcriptional termination of most non-coding and some coding transcripts at RNA polymerase pause sites. Sen1 specifically interacts with Rnt1p (RNase III), an endoribonuclease, and with Rpb1p (Rpo21p), a subunit of RNA polymerase II, through its N-terminal domain (NTD), which is a critical element of the RNA-processing machinery. Moreover, mutations in the N-terminal tail of SETX, a human ortholog of yeast Senataxin (Sen1) reported in neurological disorders.
Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
No sample metadata fields
View Samples